Realistic Adversarial Data Augmentation for MR Image Segmentation
- URL: http://arxiv.org/abs/2006.13322v1
- Date: Tue, 23 Jun 2020 20:43:18 GMT
- Title: Realistic Adversarial Data Augmentation for MR Image Segmentation
- Authors: Chen Chen, Chen Qin, Huaqi Qiu, Cheng Ouyang, Shuo Wang, Liang Chen,
Giacomo Tarroni, Wenjia Bai, Daniel Rueckert
- Abstract summary: We propose an adversarial data augmentation method for training neural networks for medical image segmentation.
Our model generates plausible and realistic signal corruptions, which models the intensity inhomogeneities caused by a common type of artefacts in MR imaging: bias field.
We show that such an approach can improve the ability generalization and robustness of models as well as provide significant improvements in low-data scenarios.
- Score: 17.951034264146138
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural network-based approaches can achieve high accuracy in various medical
image segmentation tasks. However, they generally require large labelled
datasets for supervised learning. Acquiring and manually labelling a large
medical dataset is expensive and sometimes impractical due to data sharing and
privacy issues. In this work, we propose an adversarial data augmentation
method for training neural networks for medical image segmentation. Instead of
generating pixel-wise adversarial attacks, our model generates plausible and
realistic signal corruptions, which models the intensity inhomogeneities caused
by a common type of artefacts in MR imaging: bias field. The proposed method
does not rely on generative networks, and can be used as a plug-in module for
general segmentation networks in both supervised and semi-supervised learning.
Using cardiac MR imaging we show that such an approach can improve the
generalization ability and robustness of models as well as provide significant
improvements in low-data scenarios.
Related papers
- MedMNIST-C: Comprehensive benchmark and improved classifier robustness by simulating realistic image corruptions [0.13108652488669734]
integration of neural-network-based systems into clinical practice is limited by challenges related to domain generalization and robustness.
We create and open-source MedMNIST-C, a benchmark dataset based on the MedMNIST+ collection covering 12 datasets and 9 imaging modalities.
arXiv Detail & Related papers (2024-06-25T13:20:39Z) - Discriminative Hamiltonian Variational Autoencoder for Accurate Tumor Segmentation in Data-Scarce Regimes [2.8498944632323755]
We propose an end-to-end hybrid architecture for medical image segmentation.
We use Hamiltonian Variational Autoencoders (HVAE) and a discriminative regularization to improve the quality of generated images.
Our architecture operates on a slice-by-slice basis to segment 3D volumes, capitilizing on the richly augmented dataset.
arXiv Detail & Related papers (2024-06-17T15:42:08Z) - Connecting the Dots: Graph Neural Network Powered Ensemble and
Classification of Medical Images [0.0]
Deep learning for medical imaging is limited due to the requirement for large amounts of training data.
We employ the Image Foresting Transform to optimally segment images into superpixels.
These superpixels are subsequently transformed into graph-structured data, enabling the proficient extraction of features and modeling of relationships.
arXiv Detail & Related papers (2023-11-13T13:20:54Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
We propose a learnable weight-based hybrid medical image segmentation approach.
Our approach is easy to integrate into any hybrid model and requires no external training data.
Experiments on multi-organ and lung cancer segmentation tasks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-15T17:55:05Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
We propose a domain transfer approach based on conditional invertible neural networks (cINNs)
Our method inherently guarantees cycle consistency through its invertible architecture, and network training can efficiently be conducted with maximum likelihood.
Our method enables the generation of realistic spectral data and outperforms the state of the art on two downstream classification tasks.
arXiv Detail & Related papers (2023-03-17T18:00:27Z) - Analysing the effectiveness of a generative model for semi-supervised
medical image segmentation [23.898954721893855]
State-of-the-art in automated segmentation remains supervised learning, employing discriminative models such as U-Net.
Semi-supervised learning (SSL) attempts to leverage the abundance of unlabelled data to obtain more robust and reliable models.
Deep generative models such as the SemanticGAN are truly viable alternatives to tackle challenging medical image segmentation problems.
arXiv Detail & Related papers (2022-11-03T15:19:59Z) - Enhancing MR Image Segmentation with Realistic Adversarial Data
Augmentation [17.539828821476224]
We propose an adversarial data augmentation approach to improve the efficiency in utilizing training data.
We present a generic task-driven learning framework, which jointly optimize a data augmentation model and a segmentation network during training.
The proposed adversarial data augmentation does not rely on generative networks and can be used as a plug-in module in general segmentation networks.
arXiv Detail & Related papers (2021-08-07T11:32:37Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - SAG-GAN: Semi-Supervised Attention-Guided GANs for Data Augmentation on
Medical Images [47.35184075381965]
We present a data augmentation method for generating synthetic medical images using cycle-consistency Generative Adversarial Networks (GANs)
The proposed GANs-based model can generate a tumor image from a normal image, and in turn, it can also generate a normal image from a tumor image.
We train the classification model using real images with classic data augmentation methods and classification models using synthetic images.
arXiv Detail & Related papers (2020-11-15T14:01:24Z) - Domain Generalization for Medical Imaging Classification with
Linear-Dependency Regularization [59.5104563755095]
We introduce a simple but effective approach to improve the generalization capability of deep neural networks in the field of medical imaging classification.
Motivated by the observation that the domain variability of the medical images is to some extent compact, we propose to learn a representative feature space through variational encoding.
arXiv Detail & Related papers (2020-09-27T12:30:30Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.