論文の概要: PC-GAIN: Pseudo-label Conditional Generative Adversarial Imputation
Networks for Incomplete Data
- arxiv url: http://arxiv.org/abs/2011.07770v2
- Date: Tue, 6 Apr 2021 08:41:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-24 23:39:31.828969
- Title: PC-GAIN: Pseudo-label Conditional Generative Adversarial Imputation
Networks for Incomplete Data
- Title(参考訳): pc-gain:不完全データのための擬似ラベル条件生成逆インプテーションネットワーク
- Authors: Yufeng Wang, Dan Li, Xiang Li, Min Yang
- Abstract要約: PC-GAIN(PC-GAIN)は、PC-GAIN(PC-GAIN)と呼ばれる新しい教師なしデータ計算法である。
まず,低損失率データのサブセットに含まれる潜在的なカテゴリ情報を学習するための事前学習手順を提案する。
そして、合成擬似ラベルを用いて補助分類器を決定する。
- 参考スコア(独自算出の注目度): 19.952411963344556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Datasets with missing values are very common in real world applications.
GAIN, a recently proposed deep generative model for missing data imputation,
has been proved to outperform many state-of-the-art methods. But GAIN only uses
a reconstruction loss in the generator to minimize the imputation error of the
non-missing part, ignoring the potential category information which can reflect
the relationship between samples. In this paper, we propose a novel
unsupervised missing data imputation method named PC-GAIN, which utilizes
potential category information to further enhance the imputation power.
Specifically, we first propose a pre-training procedure to learn potential
category information contained in a subset of low-missing-rate data. Then an
auxiliary classifier is determined using the synthetic pseudo-labels. Further,
this classifier is incorporated into the generative adversarial framework to
help the generator to yield higher quality imputation results. The proposed
method can improve the imputation quality of GAIN significantly. Experimental
results on various benchmark datasets show that our method is also superior to
other baseline approaches. Our code is available at
\url{https://github.com/WYu-Feng/pc-gain}.
- Abstract(参考訳): 価値が欠けているデータセットは、現実世界のアプリケーションで非常に一般的です。
最近提案されたデータ計算の欠如に対する深層生成モデルGAINは、多くの最先端手法より優れていることが証明されている。
しかし、GAINはジェネレータ内の再構成損失のみを使用して、非欠落部の計算誤差を最小限に抑え、サンプル間の関係を反映できる潜在的なカテゴリ情報を無視する。
本稿では,PC-GAINと名づけられた非教師なしデータ計算手法を提案する。
具体的には,まず,低遅延データのサブセットに含まれる潜在的なカテゴリ情報を学習するための事前学習手法を提案する。
そして、合成擬似ラベルを用いて補助分類器を決定する。
さらに、この分類器は、生成逆境の枠組みに組み込まれ、ジェネレータがより高い品質の計算結果を得るのを助ける。
提案手法は利得のインプテーション品質を著しく向上させることができる。
各種ベンチマークデータセットの実験結果から,本手法は他のベースライン手法よりも優れていることが示された。
我々のコードは \url{https://github.com/WYu-Feng/pc-gain} で入手できる。
関連論文リスト
- Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
異なるスコアに基づく因果探索法は観測データから有向非巡回グラフを学習する。
本稿では,Reweighted Score関数ReScoreの適応重みを動的に学習することにより因果発見性能を向上させるためのモデルに依存しないフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-06T14:49:59Z) - Mutual Information Learned Classifiers: an Information-theoretic
Viewpoint of Training Deep Learning Classification Systems [9.660129425150926]
クロスエントロピー損失は、重度のオーバーフィッティング動作を示すモデルを見つけるのに容易である。
本稿では,既存のDNN分類器のクロスエントロピー損失最小化が,基礎となるデータ分布の条件エントロピーを本質的に学習することを証明する。
ラベルと入力の相互情報を学習することで、DNN分類器を訓練する相互情報学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-03T15:09:19Z) - A Systematic Evaluation of Node Embedding Robustness [77.29026280120277]
本研究では,ノード埋め込みモデルのランダムおよび逆毒攻撃に対する経験的ロバスト性を評価する。
ネットワーク特性とノードラベルを用いて計算したエッジの追加,削除,再切り替えの戦略を比較した。
その結果,ノード分類はネットワーク再構成とは対照的に,高い性能劣化に悩まされていることがわかった。
論文 参考訳(メタデータ) (2022-09-16T17:20:23Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - Riemannian classification of EEG signals with missing values [67.90148548467762]
本稿では脳波の分類に欠落したデータを扱うための2つの方法を提案する。
第1のアプローチでは、インプットされたデータと$k$-nearestの隣人アルゴリズムとの共分散を推定し、第2のアプローチでは、期待最大化アルゴリズム内で観測データの可能性を活用することにより、観測データに依存する。
その結果, 提案手法は観測データに基づく分類よりも優れており, 欠落したデータ比が増大しても高い精度を維持することができることがわかった。
論文 参考訳(メタデータ) (2021-10-19T14:24:50Z) - Categorical EHR Imputation with Generative Adversarial Nets [11.171712535005357]
本稿では,データ計算のためのGANに関する従来の研究を基にした,シンプルで効果的な手法を提案する。
従来のデータ計算手法に比べて予測精度が大幅に向上していることを示す。
論文 参考訳(メタデータ) (2021-08-03T18:50:26Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
本稿では,不備な値を含む入力からの推論をインプットなしでトレーニングするIGSGD法の重要性について紹介する。
バックプロパゲーションによるモデルのトレーニングに使用する勾配の調整には強化学習(RL)を用いる。
我々の計算自由予測は、最先端の計算手法を用いて従来の2段階の計算自由予測よりも優れている。
論文 参考訳(メタデータ) (2021-07-05T12:44:39Z) - IFGAN: Missing Value Imputation using Feature-specific Generative
Adversarial Networks [14.714106979097222]
本論文では,GAN(Feature-specific Generative Adversarial Networks)に基づく欠落値インピーダンスアルゴリズムIFGANを提案する。
特徴特異的生成器は欠落した値を誘発するように訓練され、判別器は観測された値と区別することが期待される。
IFGANは、様々な不足条件下で、現在の最先端アルゴリズムよりも優れている実生活データセットを実証的に示す。
論文 参考訳(メタデータ) (2020-12-23T10:14:35Z) - Imputation of Missing Data with Class Imbalance using Conditional
Generative Adversarial Networks [24.075691766743702]
そこで本研究では,そのクラス固有の特徴に基づいて,欠落したデータを出力する新しい手法を提案する。
CGAIN(Con Conditional Generative Adversarial Imputation Network)は、クラス固有の分布を用いて、欠落したデータをインプットする。
提案手法をベンチマークデータセットで検証し,最先端の計算手法や一般的な計算手法と比較して優れた性能を示した。
論文 参考訳(メタデータ) (2020-12-01T02:26:54Z) - Missing Features Reconstruction Using a Wasserstein Generative
Adversarial Imputation Network [0.0]
特徴再構成における生成モデルと非生成モデルの使用について実験的に検討した。
任意条件付き生成オートエンコーダ(VAEAC)とGAIN(Generative Adversarial Imputation Network)を生成モデルの代表として研究した。
WGAIN を GAIN のワッサースタイン修飾法として導入し,欠損度が 30% 以下である場合に最も優れた計算モデルであることが判明した。
論文 参考訳(メタデータ) (2020-06-21T11:53:55Z) - Classify and Generate Reciprocally: Simultaneous Positive-Unlabelled
Learning and Conditional Generation with Extra Data [77.31213472792088]
クラスラベルデータの不足は、多くの機械学習問題において、ユビキタスなボトルネックとなっている。
本稿では, 正負ラベル付き(PU)分類と, 余分なラベル付きデータによる条件生成を活用することで, この問題に対処する。
本稿では,PU分類と条件生成を併用した新たなトレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-14T08:27:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。