論文の概要: Subtensor Quantization for Mobilenets
- arxiv url: http://arxiv.org/abs/2011.08009v1
- Date: Wed, 4 Nov 2020 15:41:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-29 21:49:01.393760
- Title: Subtensor Quantization for Mobilenets
- Title(参考訳): モバイルネットにおけるサブテンソル量子化
- Authors: Thu Dinh, Andrey Melnikov, Vasilios Daskalopoulos, Sek Chai
- Abstract要約: ディープニューラルネットワーク(DNN)の量子化により、開発者はより少ないメモリとより効率的な低消費電力推論でモデルをデプロイできるようになった。
本稿では,量子化損失の根本原因について分析し,チャネル単位やトレーニング対応のアプローチに依存しない代替案を提案する。
我々は、ImageNetデータセット上の画像分類タスクと、浮動小数点バージョンの0.7%以内で、トレーニング後の量子化8ビット推論トップ1の精度を評価する。
- 参考スコア(独自算出の注目度): 5.735035463793008
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantization for deep neural networks (DNN) have enabled developers to deploy
models with less memory and more efficient low-power inference. However, not
all DNN designs are friendly to quantization. For example, the popular
Mobilenet architecture has been tuned to reduce parameter size and
computational latency with separable depth-wise convolutions, but not all
quantization algorithms work well and the accuracy can suffer against its float
point versions. In this paper, we analyzed several root causes of quantization
loss and proposed alternatives that do not rely on per-channel or
training-aware approaches. We evaluate the image classification task on
ImageNet dataset, and our post-training quantized 8-bit inference top-1
accuracy in within 0.7% of the floating point version.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)の量子化により、開発者はより少ないメモリとより効率的な低消費電力推論でモデルをデプロイできるようになった。
しかし、全てのDNN設計が量子化に親しみやすいわけではない。
例えば、人気の高いMobilenetアーキテクチャは、パラメータサイズと計算遅延を分離可能な深さワイド畳み込みで削減するように調整されているが、全ての量子化アルゴリズムがうまく機能し、精度が浮動小数点バージョンに悪影響を及ぼすわけではない。
本稿では,量子化損失の根本原因を解析し,チャネル単位やトレーニング対応アプローチに依存しない代替案を提案する。
我々は、ImageNetデータセット上の画像分類タスクと、浮動小数点バージョンの0.7%以内で、トレーニング後の8ビット推論トップ-1精度を評価する。
関連論文リスト
- Two Heads are Better Than One: Neural Networks Quantization with 2D Hilbert Curve-based Output Representation [3.4606942690643336]
本稿では,DNNの出力の冗長表現を用いた新しいDNN量子化手法を提案する。
このマッピングにより量子化誤差を低減できることを示す。
我々のアプローチはセグメンテーション、オブジェクト検出、キーポイント予測など他のタスクにも適用できる。
論文 参考訳(メタデータ) (2024-05-22T21:59:46Z) - FxP-QNet: A Post-Training Quantizer for the Design of Mixed
Low-Precision DNNs with Dynamic Fixed-Point Representation [2.4149105714758545]
我々は、ディープニューラルネットワーク(FxP-QNet)の固定点量子化器(FixP-QNet)と呼ばれる新しいフレームワークを提案する。
FxP-QNetは、ネットワーク精度と低精度要求との間のトレードオフに基づいて、各レイヤのデータ構造ごとに量子化レベルを適用する。
その結果、FxP-QNet量子化されたAlexNet、VGG-16、ResNet-18は、全精度のメモリ要求を0.95%未満の7.16x、10.36x、6.44x、1.99%削減した。
論文 参考訳(メタデータ) (2022-03-22T23:01:43Z) - OMPQ: Orthogonal Mixed Precision Quantization [64.59700856607017]
混合精度量子化は、ハードウェアの多重ビット幅演算を利用して、ネットワーク量子化の全ポテンシャルを解き放つ。
本稿では、整数プログラミングの損失と高い相関関係にあるネットワーク性の概念であるプロキシメトリックを最適化することを提案する。
このアプローチは、量子化精度にほとんど妥協することなく、検索時間と必要なデータ量を桁違いに削減する。
論文 参考訳(メタデータ) (2021-09-16T10:59:33Z) - Quantized Neural Networks via {-1, +1} Encoding Decomposition and
Acceleration [83.84684675841167]
本稿では,量子化されたニューラルネットワーク(QNN)をマルチブランチバイナリネットワークに分解するために,-1,+1を用いた新しい符号化方式を提案する。
本稿では,大規模画像分類,オブジェクト検出,セマンティックセグメンテーションにおける提案手法の有効性を検証する。
論文 参考訳(メタデータ) (2021-06-18T03:11:15Z) - Once Quantization-Aware Training: High Performance Extremely Low-bit
Architecture Search [112.05977301976613]
本稿では,ネットワークアーキテクチャ検索手法と量子化手法を組み合わせることで,両者のメリットを享受することを提案する。
まず、多数の量子化モデルを取得するために、共有ステップサイズでアーキテクチャと量子化の合同トレーニングを提案する。
次に、量子化されたモデルを低ビットに転送するためにビット継承方式を導入し、さらに時間コストを削減し、量子化精度を向上させる。
論文 参考訳(メタデータ) (2020-10-09T03:52:16Z) - AQD: Towards Accurate Fully-Quantized Object Detection [94.06347866374927]
本稿では,浮動小数点演算を除去するために,AQDと呼ばれる高精度な量子化オブジェクト検出ソリューションを提案する。
我々のAQDは、非常に低ビットのスキームの下での完全精度と比較して、同等またはそれ以上の性能を実現しています。
論文 参考訳(メタデータ) (2020-07-14T09:07:29Z) - Efficient Integer-Arithmetic-Only Convolutional Neural Networks [87.01739569518513]
我々は従来のReLUを境界ReLUに置き換え、その減少は活性化量子化によるものであることを示す。
我々の整数ネットワークは、対応するFPNネットワークと同等の性能を発揮するが、メモリコストは1/4に過ぎず、最新のGPUでは2倍高速である。
論文 参考訳(メタデータ) (2020-06-21T08:23:03Z) - Integer Quantization for Deep Learning Inference: Principles and
Empirical Evaluation [4.638764944415326]
量子化技術は、ディープニューラルネットワークのサイズを小さくし、推論レイテンシとスループットを改善する。
本稿では,高スループット整数演算パイプラインを持つプロセッサによる高速化に寄与する量子化技術に着目する。
本研究では,全ネットワークにおいて,浮動小数点ベースラインの1%以内の精度を維持できる8ビット量子化のワークフローを提案する。
論文 参考訳(メタデータ) (2020-04-20T19:59:22Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
量子化ニューラルネットワーク(QNN)は、非常に安価な計算とストレージオーバーヘッドのため、業界にとって非常に魅力的なものだが、その性能は、完全な精度パラメータを持つネットワークよりも悪い。
既存の手法の多くは、より効果的なトレーニング技術を利用して、特にバイナリニューラルネットワークの性能を高めることを目的としている。
本稿では,従来の完全精度ネットワークで高次元量子化機能に特徴を投影することで,この問題に対処する。
論文 参考訳(メタデータ) (2020-02-03T04:11:13Z) - Shifted and Squeezed 8-bit Floating Point format for Low-Precision
Training of Deep Neural Networks [13.929168096016957]
本研究では,8ビット浮動小数点(FP8)数を用いたディープニューラルネットワークのトレーニング手法を提案する。
ビット精度の低減により、有効メモリが大きくなり、計算速度が向上する。
提案手法は,従来の8ビット精度訓練法と異なり,代表モデルに対して最初から動作可能であることを示す。
論文 参考訳(メタデータ) (2020-01-16T06:38:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。