Tissue characterization based on the analysis on i3DUS data for
diagnosis support in neurosurgery
- URL: http://arxiv.org/abs/2011.08129v1
- Date: Sat, 24 Oct 2020 10:44:49 GMT
- Title: Tissue characterization based on the analysis on i3DUS data for
diagnosis support in neurosurgery
- Authors: Mou-Cheng Xu
- Abstract summary: The proposed CAD system based on "Attention-Mixed Res-U-net with asymmetric loss function" achieves the state-of-the-art results.
- Score: 1.0423580478280678
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Brain shift makes the pre-operative MRI navigation highly inaccurate hence
the intraoperative modalities are adopted in surgical theatre. Due to the
excellent economic and portability merits, the Ultrasound imaging is used at
our collaborating hospital, Charing Cross Hospital, Imperial College London,
UK. However, it is found that intraoperative diagnosis on Ultrasound images is
not straightforward and consistent, even for very experienced clinical experts.
Hence, there is a demand to design a Computer-aided-diagnosis system to provide
a robust second opinion to help the surgeons. The proposed CAD system based on
"Mixed-Attention Res-U-net with asymmetric loss function" achieves the
state-of-the-art results comparing to the ground truth by classification at
pixel-level directly, it also outperforms all the current main stream
pixel-level classification methods (e.g. U-net, FCN) in all the evaluation
metrices.
Related papers
- Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
This study focuses on the clinical evaluation of medical Synthetic Data Generation using Artificial Intelligence (AI) models.
The paper contributes by a) presenting a protocol for the systematic evaluation of synthetic images by medical experts and b) applying it to assess TIDE-II, a novel variational autoencoder-based model for high-resolution WCE image synthesis.
The results show that TIDE-II generates clinically relevant WCE images, helping to address data scarcity and enhance diagnostic tools.
arXiv Detail & Related papers (2024-10-31T19:48:50Z) - Patient-Specific Real-Time Segmentation in Trackerless Brain Ultrasound [35.526097492693864]
Intraoperative ultrasound (iUS) imaging has the potential to improve surgical outcomes in brain surgery.
But its interpretation is challenging, even for expert neurosurgeons.
In this work, we designed the first patient-specific framework that performs brain tumor segmentation in trackerless iUS.
arXiv Detail & Related papers (2024-05-16T10:07:30Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
endovascular surgeries are performed using the golden standard of Fluoroscopy, which uses ionising radiation to visualise catheters and vasculature.
This work proposes a solution using an adaptation of a state-of-the-art machine learning transformer architecture to detect and segment catheters in axial interventional Ultrasound image sequences.
arXiv Detail & Related papers (2023-09-25T19:34:12Z) - FocalErrorNet: Uncertainty-aware focal modulation network for
inter-modal registration error estimation in ultrasound-guided neurosurgery [3.491999371287298]
Intra-operative tissue deformation (called brain shift) can move the surgical target and render the pre-surgical plan invalid.
We propose a novel deep learning technique based on 3D focal modulation in conjunction with uncertainty estimation to accurately assess MRI-iUS registration errors for brain tumor surgery.
arXiv Detail & Related papers (2023-07-26T21:42:22Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
The problem of how to assess cross-modality medical image synthesis has been largely unexplored.
We propose a new metric K-CROSS to spur progress on this challenging problem.
K-CROSS uses a pre-trained multi-modality segmentation network to predict the lesion location.
arXiv Detail & Related papers (2023-07-10T01:26:48Z) - Intra-operative Brain Tumor Detection with Deep Learning-Optimized
Hyperspectral Imaging [37.21885467891782]
Surgery for gliomas (intrinsic brain tumors) is challenging due to the infiltrative nature of the lesion.
No real-time, intra-operative, label-free and wide-field tool is available to assist and guide the surgeon to find the relevant demarcations for these tumors.
We build a deep-learning-based diagnostic tool for cancer resection with potential for intra-operative guidance.
arXiv Detail & Related papers (2023-02-06T15:52:03Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
Motion artefacts in magnetic resonance brain images are a crucial issue.
The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis.
An automated image quality assessment based on the structural similarity index (SSIM) regression has been proposed here.
arXiv Detail & Related papers (2022-06-14T10:16:54Z) - Automatic Detection and Segmentation of Postoperative Cerebellar Damage
Based on Normalization [1.1470070927586016]
A reliable localization and measure of cerebellar damage is fundamental to study the relationship between the damaged cerebellar regions and postoperative neurological outcomes.
Existing cerebellum normalization methods are not reliable on postoperative scans, therefore current approaches to measure surgical damage rely on manual labelling.
We develop a robust algorithm to automatically detect and measure cerebellum damage due to surgery using postoperative 3D T1 magnetic resonance imaging.
arXiv Detail & Related papers (2022-03-03T22:26:59Z) - Outlier-based Autism Detection using Longitudinal Structural MRI [6.311381904410801]
This paper proposes structural Magnetic Resonance Imaging (sMRI)-based Autism Spectrum Disorder diagnosis via an outlier detection approach.
Generative Adversarial Network (GAN) is trained exclusively with sMRI scans of healthy subjects.
Experiments reveal that our ASD detection framework performs comparably with the state-of-the-art with far fewer training data.
arXiv Detail & Related papers (2022-02-21T04:37:25Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.