Outlier-based Autism Detection using Longitudinal Structural MRI
- URL: http://arxiv.org/abs/2202.09988v1
- Date: Mon, 21 Feb 2022 04:37:25 GMT
- Title: Outlier-based Autism Detection using Longitudinal Structural MRI
- Authors: Devika K, Venkata Ramana Murthy Oruganti, Dwarikanath Mahapatra,
Ramanathan Subramanian
- Abstract summary: This paper proposes structural Magnetic Resonance Imaging (sMRI)-based Autism Spectrum Disorder diagnosis via an outlier detection approach.
Generative Adversarial Network (GAN) is trained exclusively with sMRI scans of healthy subjects.
Experiments reveal that our ASD detection framework performs comparably with the state-of-the-art with far fewer training data.
- Score: 6.311381904410801
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diagnosis of Autism Spectrum Disorder (ASD) using clinical evaluation
(cognitive tests) is challenging due to wide variations amongst individuals.
Since no effective treatment exists, prompt and reliable ASD diagnosis can
enable the effective preparation of treatment regimens. This paper proposes
structural Magnetic Resonance Imaging (sMRI)-based ASD diagnosis via an outlier
detection approach. To learn Spatio-temporal patterns in structural brain
connectivity, a Generative Adversarial Network (GAN) is trained exclusively
with sMRI scans of healthy subjects. Given a stack of three adjacent slices as
input, the GAN generator reconstructs the next three adjacent slices; the GAN
discriminator then identifies ASD sMRI scan reconstructions as outliers. This
model is compared against two other baselines -- a simpler UNet and a
sophisticated Self-Attention GAN. Axial, Coronal, and Sagittal sMRI slices from
the multi-site ABIDE II dataset are used for evaluation. Extensive experiments
reveal that our ASD detection framework performs comparably with the
state-of-the-art with far fewer training data. Furthermore, longitudinal data
(two scans per subject over time) achieve 17-28% higher accuracy than
cross-sectional data (one scan per subject). Among other findings, metrics
employed for model training as well as reconstruction loss computation impact
detection performance, and the coronal modality is found to best encode
structural information for ASD detection.
Related papers
- Explainable AI for Autism Diagnosis: Identifying Critical Brain Regions Using fMRI Data [0.29687381456163997]
Early diagnosis and intervention for Autism Spectrum Disorder (ASD) has been shown to significantly improve the quality of life of autistic individuals.
There is a need for objective biomarkers of ASD which can help improve diagnostic accuracy.
Deep learning (DL) has achieved outstanding performance in diagnosing diseases and conditions from medical imaging data.
This research aims to improve the accuracy and interpretability of ASD diagnosis by creating a DL model that can not only accurately classify ASD but also provide explainable insights into its working.
arXiv Detail & Related papers (2024-09-19T23:08:09Z) - Enhancing Angular Resolution via Directionality Encoding and Geometric Constraints in Brain Diffusion Tensor Imaging [70.66500060987312]
Diffusion-weighted imaging (DWI) is a type of Magnetic Resonance Imaging (MRI) technique sensitised to the diffusivity of water molecules.
This work proposes DirGeo-DTI, a deep learning-based method to estimate reliable DTI metrics even from a set of DWIs acquired with the minimum theoretical number (6) of gradient directions.
arXiv Detail & Related papers (2024-09-11T11:12:26Z) - Diagnosing Bipolar Disorder from 3-D Structural Magnetic Resonance
Images Using a Hybrid GAN-CNN Method [0.0]
This study proposes a hybrid GAN-CNN model to diagnose Bipolar Disorder (BD) from 3-D structural MRI Images (sMRI)
Based on the results, this study obtains an accuracy rate of 75.8%, a sensitivity of 60.3%, and a specificity of 82.5%, which are 3-5% higher than prior work.
arXiv Detail & Related papers (2023-10-11T10:17:41Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
The problem of how to assess cross-modality medical image synthesis has been largely unexplored.
We propose a new metric K-CROSS to spur progress on this challenging problem.
K-CROSS uses a pre-trained multi-modality segmentation network to predict the lesion location.
arXiv Detail & Related papers (2023-07-10T01:26:48Z) - Autism Spectrum Disorder Classification in Children based on Structural
MRI Features Extracted using Contrastive Variational Autoencoder [5.2927782596213]
Autism spectrum disorder (ASD) is a highly disabling mental disease that brings significant impairments of social interaction ability to the patients.
With the development of the machine learning and neuroimaging technology, extensive research has been conducted on machine classification of ASD based on structural MRI (s-MRI)
Few studies conduct machine classification of ASD for participants below 5-year-old, but, with mediocre predictive accuracy.
arXiv Detail & Related papers (2023-07-03T12:46:19Z) - FAST-AID Brain: Fast and Accurate Segmentation Tool using Artificial
Intelligence Developed for Brain [0.8376091455761259]
A novel deep learning method is proposed for fast and accurate segmentation of the human brain into 132 regions.
The proposed model uses an efficient U-Net-like network and benefits from the intersection points of different views and hierarchical relations.
The proposed method can be applied to brain MRI data including skull or any other artifacts without preprocessing the images or a drop in performance.
arXiv Detail & Related papers (2022-08-30T16:06:07Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
We propose a one-stage detection framework termed SpineOne to simultaneously localize and classify degenerative discs and vertebrae from MRI slices.
SpineOne is built upon the following three key techniques: 1) a new design of the keypoint heatmap to facilitate simultaneous keypoint localization and classification; 2) the use of attention modules to better differentiate the representations between discs and vertebrae; and 3) a novel gradient-guided objective association mechanism to associate multiple learning objectives at the later training stage.
arXiv Detail & Related papers (2021-10-28T12:59:06Z) - Automatic Assessment of Alzheimer's Disease Diagnosis Based on Deep
Learning Techniques [111.165389441988]
This work is to develop a system that automatically detects the presence of the disease in sagittal magnetic resonance images (MRI)
Although sagittal-plane MRIs are not commonly used, this work proved that they were, at least, as effective as MRI from other planes at identifying AD in early stages.
This study proved that DL models could be built in these fields, whereas TL is an essential tool for completing the task with fewer examples.
arXiv Detail & Related papers (2021-05-18T11:37:57Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
People with diabetes are at risk of developing diabetic retinopathy (DR)
Computer-aided DR diagnosis is a promising tool for early detection of DR and severity grading.
This dataset has 1,842 images with pixel-level DR-related lesion annotations, and 1,000 images with image-level labels graded by six board-certified ophthalmologists.
arXiv Detail & Related papers (2020-08-22T07:48:04Z) - Explainable and Scalable Machine-Learning Algorithms for Detection of
Autism Spectrum Disorder using fMRI Data [0.2578242050187029]
Our proposed deep-learning model ASD-DiagNet exhibits consistently high accuracy for classification of ASD brain scans from neurotypical scans.
Our method, called Auto-ASD-Network, uses a combination of deep-learning and Support Vector Machines (SVM) to classify ASD scans from neurotypical scans.
arXiv Detail & Related papers (2020-03-02T18:20:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.