論文の概要: Private Wireless Federated Learning with Anonymous Over-the-Air
Computation
- arxiv url: http://arxiv.org/abs/2011.08579v2
- Date: Sat, 13 Feb 2021 21:37:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-24 17:50:49.788268
- Title: Private Wireless Federated Learning with Anonymous Over-the-Air
Computation
- Title(参考訳): Anonymous Over-the-Air Computationを用いたプライベートワイヤレスフェデレーションラーニング
- Authors: Burak Hasircioglu, Deniz Gunduz
- Abstract要約: オーバー・ザ・エア(OAC)を利用して送信装置を匿名化することにより,システムのプライバシを高めることができることを示す。
提案手法は、入射するノイズの量を減らすことにより、プライベート無線FLの性能を向上させる。
- 参考スコア(独自算出の注目度): 3.8580784887142774
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In conventional federated learning (FL), differential privacy (DP) guarantees
can be obtained by injecting additional noise to local model updates before
transmitting to the parameter server (PS). In the wireless FL scenario, we show
that the privacy of the system can be boosted by exploiting over-the-air
computation (OAC) and anonymizing the transmitting devices. In OAC, devices
transmit their model updates simultaneously and in an uncoded fashion,
resulting in a much more efficient use of the available spectrum. We further
exploit OAC to provide anonymity for the transmitting devices. The proposed
approach improves the performance of private wireless FL by reducing the amount
of noise that must be injected.
- Abstract(参考訳): 従来のフェデレーション学習(FL)では、パラメータサーバ(PS)に送信する前にローカルモデル更新に付加ノイズを注入することで、差分プライバシー(DP)保証を得ることができる。
無線flのシナリオでは,oac(over-the-air computation)を活用し,送信装置を匿名化することにより,システムのプライバシーを向上できることを示す。
oacでは、デバイスがモデル更新を同時かつ非コード形式で送信することで、利用可能なスペクトルをより効率的に利用することができる。
我々はさらにOACを利用して送信装置の匿名性を提供する。
提案手法は、入射するノイズの量を減らすことにより、プライベート無線FLの性能を向上させる。
関連論文リスト
- Binary Federated Learning with Client-Level Differential Privacy [7.854806519515342]
フェデレートラーニング(Federated Learning、FL)は、プライバシ保護のための協調学習フレームワークである。
既存のFLシステムはトレーニングアルゴリズムとしてフェデレーション平均(FedAvg)を採用するのが一般的である。
差分プライバシーを保証する通信効率のよいFLトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-08-07T06:07:04Z) - Differentially Private Over-the-Air Federated Learning Over MIMO Fading
Channels [24.534729104570417]
フェデレートラーニング(FL)は、エッジデバイスが機械学習モデルを協調的にトレーニングすることを可能にする。
オーバー・ザ・エアのモデルアグリゲーションは通信効率を向上させるが、無線ネットワーク上のエッジサーバにモデルをアップロードすると、プライバシのリスクが生じる可能性がある。
FLモデルとマルチアンテナサーバとの通信がプライバシー漏洩を増幅することを示す。
論文 参考訳(メタデータ) (2023-06-19T14:44:34Z) - Differentially Private Wireless Federated Learning Using Orthogonal
Sequences [56.52483669820023]
本稿では,FLORAS と呼ばれる AirComp 法を提案する。
FLORASはアイテムレベルとクライアントレベルの差分プライバシー保証の両方を提供する。
新たなFL収束バウンダリが導出され、プライバシー保証と組み合わせることで、達成された収束率と差分プライバシーレベルのスムーズなトレードオフが可能になる。
論文 参考訳(メタデータ) (2023-06-14T06:35:10Z) - Spectrum Breathing: Protecting Over-the-Air Federated Learning Against
Interference [101.9031141868695]
モバイルネットワークは、近隣のセルやジャマーからの干渉によって損なわれる可能性がある。
本稿では,帯域幅拡大を伴わない干渉を抑制するために,カスケード段階のプルーニングとスペクトル拡散を行うスペクトルブリーチングを提案する。
呼吸深度によって制御された勾配プルーニングと干渉誘発誤差の間には,性能的トレードオフが認められた。
論文 参考訳(メタデータ) (2023-05-10T07:05:43Z) - Communication and Energy Efficient Wireless Federated Learning with
Intrinsic Privacy [16.305837225117603]
Federated Learning(FL)は、エッジデバイスが生データをローカルに保持しながら、グローバルモデルを共同で学習することを可能にする、協調学習フレームワークである。
本研究では,PFELS(Private Edge Learning with Spars)と呼ばれる新しい無線FL方式を提案する。
論文 参考訳(メタデータ) (2023-04-15T03:04:11Z) - Secure Over-the-Air Computation using Zero-Forced Artificial Noise [24.91252655705963]
我々は,受動盗聴器の存在下で,ブロックフェディング付加型白色ガウス雑音チャネルの空力計算について検討する。
ゼロフォース人工雑音を用いて盗聴者に対するMSEセキュリティを実現する手法を提案する。
論文 参考訳(メタデータ) (2022-12-08T14:30:59Z) - Over-the-Air Federated Learning with Privacy Protection via Correlated
Additive Perturbations [57.20885629270732]
我々は、複数のユーザ/エージェントからエッジサーバへの勾配更新をOtA(Over-the-Air)で送信することで、無線フェデレーション学習のプライバシー面を考察する。
従来の摂動に基づく手法は、トレーニングの精度を犠牲にしてプライバシー保護を提供する。
本研究では,エッジサーバにおけるプライバシリークの最小化とモデル精度の低下を目標とする。
論文 参考訳(メタデータ) (2022-10-05T13:13:35Z) - GraSens: A Gabor Residual Anti-aliasing Sensing Framework for Action
Recognition using WiFi [52.530330427538885]
WiFiベースのヒューマンアクション認識(HAR)は、スマートリビングやリモート監視といったアプリケーションにおいて、有望なソリューションと見なされている。
本稿では,無線機器からのWiFi信号を用いた動作を,多様なシナリオで直接認識する,エンド・ツー・エンドのGabor残差検知ネットワーク(GraSens)を提案する。
論文 参考訳(メタデータ) (2022-05-24T10:20:16Z) - Blind Federated Edge Learning [93.29571175702735]
フェデレーションエッジ学習(FEEL)について検討し,それぞれが独自のデータセットを持つ無線エッジデバイスでグローバルモデルを学ぶ。
そこで本研究では,デバイスがローカル更新を非符号化方式で送信する,アナログオーバ・ザ・エアのアグリゲーション方式を提案する。
論文 参考訳(メタデータ) (2020-10-19T16:22:28Z) - Harnessing Wireless Channels for Scalable and Privacy-Preserving
Federated Learning [56.94644428312295]
無線接続は、フェデレートラーニング(FL)の実現に有効である
Channel randomnessperturbs 各ワーカはモデル更新をインバージョンし、複数のワーカはバンド幅に大きな干渉を発生させる。
A-FADMMでは、すべてのワーカーがモデル更新をアナログ送信を介して単一のチャンネルを使用してパラメータサーバにアップロードする。
これは通信帯域幅を節約するだけでなく、各ワーカーの正確なモデル更新軌跡を任意の盗聴者から隠蔽する。
論文 参考訳(メタデータ) (2020-07-03T16:31:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。