論文の概要: Anatomy Prior Based U-net for Pathology Segmentation with Attention
- arxiv url: http://arxiv.org/abs/2011.08769v1
- Date: Tue, 17 Nov 2020 16:52:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-24 17:32:19.838133
- Title: Anatomy Prior Based U-net for Pathology Segmentation with Attention
- Title(参考訳): 病理診断のための解剖学的先行U-net
- Authors: Yuncheng Zhou and Ke Zhang and Xinzhe Luo and Sihan Wang and Xiahai
Zhuang
- Abstract要約: 本稿では,U-netセグメンテーションネットワークとアテンション手法を組み合わせた,解剖学的事前ベースフレームワークを提案する。
本研究では, 心筋と心筋梗塞と非リフロー領域の包含関係を評価するため, 近所のペナルティ戦略を提案する。
その結果,本フレームワークは病理領域のセグメンテーションに有効であることが示唆された。
- 参考スコア(独自算出の注目度): 11.266069499113966
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pathological area segmentation in cardiac magnetic resonance (MR) images
plays a vital role in the clinical diagnosis of cardiovascular diseases.
Because of the irregular shape and small area, pathological segmentation has
always been a challenging task. We propose an anatomy prior based framework,
which combines the U-net segmentation network with the attention technique.
Leveraging the fact that the pathology is inclusive, we propose a neighborhood
penalty strategy to gauge the inclusion relationship between the myocardium and
the myocardial infarction and no-reflow areas. This neighborhood penalty
strategy can be applied to any two labels with inclusive relationships (such as
the whole infarction and myocardium, etc.) to form a neighboring loss. The
proposed framework is evaluated on the EMIDEC dataset. Results show that our
framework is effective in pathological area segmentation.
- Abstract(参考訳): 心臓磁気共鳴画像における病理領域分割は,心血管疾患の臨床診断において重要な役割を担っている。
不規則な形状と狭い領域のため、病的分割は常に困難な課題であった。
本稿では,u-netセグメンテーションネットワークとアテンション技術を組み合わせた解剖学優先型フレームワークを提案する。
病理学が包括的であるという事実を活かし,心筋梗塞と非還流領域の包括関係を評価するための近所のペナルティ戦略を提案する。
この近所のペナルティ戦略は、包括的関係のある2つのラベル(梗塞全体や心筋など)に適用して、近隣の損失を形成することができる。
提案するフレームワークはEMIDECデータセットを用いて評価する。
その結果,本フレームワークは病理領域のセグメンテーションに有効であることがわかった。
関連論文リスト
- Anatomy-guided Pathology Segmentation [56.883822515800205]
本研究では, 解剖学的特徴と病理学的情報を組み合わせた汎用的セグメンテーションモデルを構築し, 病理学的特徴のセグメンテーション精度を高めることを目的とする。
我々の解剖学・病理学交流(APEx)訓練では,ヒト解剖学の問合せ表現に結合特徴空間をデコードする問合せベースのセグメンテーション変換器を用いている。
これにより、FDG-PET-CTとChest X-Rayの病理分類タスクにおいて、強力なベースライン法に比べて最大3.3%のマージンで、ボード全体で最高の結果を報告できる。
論文 参考訳(メタデータ) (2024-07-08T11:44:15Z) - Crop and Couple: cardiac image segmentation using interlinked specialist
networks [0.5452923068355806]
本稿では,単一解剖学に焦点を当てた専門的ネットワークを用いてセグメンテーションを行う新しい戦略を提案する。
入力長軸心MR画像から、第1段階で第3次分割を行い、これらの解剖学的領域を同定する。
専門家ネットワークは、異なる解剖学の特徴を相互に関連付けるための注意機構を介して結合される。
論文 参考訳(メタデータ) (2024-02-14T13:14:04Z) - MPSeg : Multi-Phase strategy for coronary artery Segmentation [9.767759441883008]
冠動脈セグメンテーションのための革新的多相戦略であるMPSegを提案する。
本手法は,これらの構造的複雑度に特化しており,SynTAXスコアの原理に準拠している。
特に, 自動冠状動脈疾患診断では, 異常な効果が認められた。
論文 参考訳(メタデータ) (2023-11-17T03:33:09Z) - Polar-Net: A Clinical-Friendly Model for Alzheimer's Disease Detection
in OCTA Images [53.235117594102675]
オプティカルコヒーレンス・トモグラフィーは、網膜微小血管の画像化によってアルツハイマー病(AD)を検出するための有望なツールである。
我々はPolar-Netと呼ばれる新しいディープラーニングフレームワークを提案し、解釈可能な結果を提供し、臨床上の事前知識を活用する。
Polar-Netは既存の最先端の手法よりも優れており,網膜血管変化とADとの関連性について,より貴重な病理学的証拠を提供する。
論文 参考訳(メタデータ) (2023-11-10T11:49:49Z) - Structure-aware registration network for liver DCE-CT images [50.28546654316009]
セグメント化誘導深層登録網に関連臓器の構造情報を組み込んだ構造認識型登録手法を提案する。
提案手法は,最新技術よりも高い登録精度を達成し,解剖学的構造を効果的に維持することができる。
論文 参考訳(メタデータ) (2023-03-08T14:08:56Z) - An Algorithm for the Labeling and Interactive Visualization of the
Cerebrovascular System of Ischemic Strokes [59.116811751334225]
VirtualDSA++は、CTAスキャンで脳血管ツリーをセグメンテーションし、ラベル付けするために設計されたアルゴリズムである。
閉塞血管を同定するために,脳動脈のラベル付け機構を拡張した。
本稿では,そのモデルの全ノードにおける経路の反復的体系探索という一般的な概念を紹介し,新たな対話的特徴を実現する。
論文 参考訳(メタデータ) (2022-04-26T14:20:26Z) - AWSnet: An Auto-weighted Supervision Attention Network for Myocardial
Scar and Edema Segmentation in Multi-sequence Cardiac Magnetic Resonance
Images [23.212429566838203]
マルチシーケンスCMRデータから傷痕と浮腫のセグメンテーションに取り組むための,新しい自動重み付け監視フレームワークを開発した。
また, より小さな心筋病変領域の分画を, 形状の事前知識で促進する, 粗大から細大の枠組みを設計した。
マルチシーケンスCMRデータを用いた心筋病理診断の進歩に期待できる。
論文 参考訳(メタデータ) (2022-01-14T08:59:54Z) - MyoPS: A Benchmark of Myocardial Pathology Segmentation Combining
Three-Sequence Cardiac Magnetic Resonance Images [84.02849948202116]
本研究は,MyoPS(MyoPS)の医療画像解析における新たな課題を定義するものである。
myoPSは、MICCAI 2020とともにMyoPSチャレンジで最初に提案された3シーケンスの心臓磁気共鳴(CMR)画像を組み合わせている。
この課題は45対のCMR画像と予め整列されたCMR画像を提供し、アルゴリズムは3つのCMRシーケンスから補完的な情報を結合して病理領域を分割することを可能にする。
論文 参考訳(メタデータ) (2022-01-10T06:37:23Z) - Multi-Modality Pathology Segmentation Framework: Application to Cardiac
Magnetic Resonance Images [3.5354617056939874]
本研究は,多モードCMR画像に基づく自動カスケード診断セグメンテーションフレームワークを提案する。
主に、解剖学的構造セグメンテーションネットワーク(ASSN)と病理学的領域セグメンテーションネットワーク(PRSN)の2つのニューラルネットワークで構成されている。
論文 参考訳(メタデータ) (2020-08-13T09:57:04Z) - Learning Directional Feature Maps for Cardiac MRI Segmentation [13.389141642517762]
本稿では,クラス間の差分とクラス内の類似度を同時に強化する指向性特徴写像を利用する新しい手法を提案する。
具体的には,最寄りの心臓組織の境界から各ピクセルに向けられた方向のフィールドを学習する。
学習方向のフィールドに基づいて、元のセグメンテーション機能を改善するために、特徴修正と融合(FRF)モジュールを提案する。
論文 参考訳(メタデータ) (2020-07-22T11:31:04Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
現在世界最大の心臓LGE-MRIデータセットである154個の3D LGE-MRIを用いた「2018 left Atrium Challenge」。
技術および生物学的指標を用いた提案アルゴリズムの解析を行った。
その結果, 最上部法は93.2%, 平均表面は0.7mmであった。
論文 参考訳(メタデータ) (2020-04-26T08:49:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。