PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and
Localization
- URL: http://arxiv.org/abs/2011.08785v1
- Date: Tue, 17 Nov 2020 17:29:18 GMT
- Title: PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and
Localization
- Authors: Thomas Defard, Aleksandr Setkov, Angelique Loesch, Romaric Audigier
- Abstract summary: We present a new framework for Patch Distribution Modeling, PaDiM, to concurrently detect and localize anomalies in images.
PaDiM makes use of a pretrained convolutional neural network (CNN) for patch embedding.
It also exploits correlations between the different semantic levels of CNN to better localize anomalies.
- Score: 64.39761523935613
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a new framework for Patch Distribution Modeling, PaDiM, to
concurrently detect and localize anomalies in images in a one-class learning
setting. PaDiM makes use of a pretrained convolutional neural network (CNN) for
patch embedding, and of multivariate Gaussian distributions to get a
probabilistic representation of the normal class. It also exploits correlations
between the different semantic levels of CNN to better localize anomalies.
PaDiM outperforms current state-of-the-art approaches for both anomaly
detection and localization on the MVTec AD and STC datasets. To match
real-world visual industrial inspection, we extend the evaluation protocol to
assess performance of anomaly localization algorithms on non-aligned dataset.
The state-of-the-art performance and low complexity of PaDiM make it a good
candidate for many industrial applications.
Related papers
- Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - Exploring the Relationship between Samples and Masks for Robust Defect
Localization [1.90365714903665]
This paper proposes a one-stage framework that detects defective patterns directly without the modeling process.
Explicit information that could indicate the position of defects is intentionally excluded to avoid learning any direct mapping.
Results show that the proposed method is 2.9% higher than the SOTA methods in F1-Score, while substantially outperforming SOTA methods in generalizability.
arXiv Detail & Related papers (2023-06-19T06:41:19Z) - CRADL: Contrastive Representations for Unsupervised Anomaly Detection
and Localization [2.8659934481869715]
Unsupervised anomaly detection in medical imaging aims to detect and localize arbitrary anomalies without requiring anomalous data during training.
Most current state-of-the-art methods use latent variable generative models operating directly on the images.
We propose CRADL whose core idea is to model the distribution of normal samples directly in the low-dimensional representation space of an encoder trained with a contrastive pretext-task.
arXiv Detail & Related papers (2023-01-05T16:07:49Z) - PNI : Industrial Anomaly Detection using Position and Neighborhood
Information [6.316693022958221]
We propose a new algorithm, textbfPNI, which estimates the normal distribution using conditional probability given neighborhood features.
We conducted experiments on the MVTec AD benchmark dataset and achieved state-of-the-art performance, with textbf99.56% and textbf98.98% AUROC scores in anomaly detection and localization.
arXiv Detail & Related papers (2022-11-22T23:45:27Z) - Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
Detection [55.028065567756066]
Out-of-distribution (OOD) detection has recently received much attention from the machine learning community due to its importance in deploying machine learning models in real-world applications.
In this paper we propose an uncertainty quantification approach by modelling the distribution of features.
We incorporate an efficient ensemble mechanism, namely batch-ensemble, to construct the batch-ensemble neural networks (BE-SNNs) and overcome the feature collapse problem.
We show that BE-SNNs yield superior performance on several OOD benchmarks, such as the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionM
arXiv Detail & Related papers (2022-06-26T16:00:22Z) - Fake It Till You Make It: Near-Distribution Novelty Detection by
Score-Based Generative Models [54.182955830194445]
existing models either fail or face a dramatic drop under the so-called near-distribution" setting.
We propose to exploit a score-based generative model to produce synthetic near-distribution anomalous data.
Our method improves the near-distribution novelty detection by 6% and passes the state-of-the-art by 1% to 5% across nine novelty detection benchmarks.
arXiv Detail & Related papers (2022-05-28T02:02:53Z) - Enforcing Mutual Consistency of Hard Regions for Semi-supervised Medical
Image Segmentation [68.9233942579956]
We propose a novel mutual consistency network (MC-Net+) to exploit the unlabeled hard regions for semi-supervised medical image segmentation.
The MC-Net+ model is motivated by the observation that deep models trained with limited annotations are prone to output highly uncertain and easily mis-classified predictions.
We compare the segmentation results of the MC-Net+ with five state-of-the-art semi-supervised approaches on three public medical datasets.
arXiv Detail & Related papers (2021-09-21T04:47:42Z) - A Hierarchical Transformation-Discriminating Generative Model for Few
Shot Anomaly Detection [93.38607559281601]
We devise a hierarchical generative model that captures the multi-scale patch distribution of each training image.
The anomaly score is obtained by aggregating the patch-based votes of the correct transformation across scales and image regions.
arXiv Detail & Related papers (2021-04-29T17:49:48Z) - MOCCA: Multi-Layer One-Class ClassificAtion for Anomaly Detection [16.914663209964697]
We propose our deep learning approach to the anomaly detection problem named Multi-LayerOne-Class Classification (MOCCA)
We explicitly leverage the piece-wise nature of deep neural networks by exploiting information extracted at different depths to detect abnormal data instances.
We show that our method reaches superior performances compared to the state-of-the-art approaches available in the literature.
arXiv Detail & Related papers (2020-12-09T08:32:56Z) - Anomaly localization by modeling perceptual features [3.04585143845864]
Feature-Augmented VAE is trained by reconstructing the input image in pixel space, and also in several different feature spaces.
It achieves clear improvement over state-of-the-art methods on the MVTec anomaly detection and localization datasets.
arXiv Detail & Related papers (2020-08-12T15:09:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.