PNI : Industrial Anomaly Detection using Position and Neighborhood
Information
- URL: http://arxiv.org/abs/2211.12634v3
- Date: Thu, 30 Mar 2023 05:17:19 GMT
- Title: PNI : Industrial Anomaly Detection using Position and Neighborhood
Information
- Authors: Jaehyeok Bae, Jae-Han Lee, Seyun Kim
- Abstract summary: We propose a new algorithm, textbfPNI, which estimates the normal distribution using conditional probability given neighborhood features.
We conducted experiments on the MVTec AD benchmark dataset and achieved state-of-the-art performance, with textbf99.56% and textbf98.98% AUROC scores in anomaly detection and localization.
- Score: 6.316693022958221
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Because anomalous samples cannot be used for training, many anomaly detection
and localization methods use pre-trained networks and non-parametric modeling
to estimate encoded feature distribution. However, these methods neglect the
impact of position and neighborhood information on the distribution of normal
features. To overcome this, we propose a new algorithm, \textbf{PNI}, which
estimates the normal distribution using conditional probability given
neighborhood features, modeled with a multi-layer perceptron network. Moreover,
position information is utilized by creating a histogram of representative
features at each position. Instead of simply resizing the anomaly map, the
proposed method employs an additional refine network trained on synthetic
anomaly images to better interpolate and account for the shape and edge of the
input image. We conducted experiments on the MVTec AD benchmark dataset and
achieved state-of-the-art performance, with \textbf{99.56\%} and
\textbf{98.98\%} AUROC scores in anomaly detection and localization,
respectively.
Related papers
- LADMIM: Logical Anomaly Detection with Masked Image Modeling in Discrete Latent Space [0.0]
Masked image modeling is a self-supervised learning technique that predicts the feature representation of masked regions in an image.
We propose a novel approach that leverages the characteristics of MIM to detect logical anomalies effectively.
We evaluate the proposed method on the MVTecLOCO dataset, achieving an average AUC of 0.867.
arXiv Detail & Related papers (2024-10-14T07:50:56Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - FRE: A Fast Method For Anomaly Detection And Segmentation [5.0468312081378475]
This paper presents a principled approach for solving the visual anomaly detection and segmentation problem.
We propose the application of linear statistical dimensionality reduction techniques on the intermediate features produced by a pretrained DNN on the training data.
We show that the emphfeature reconstruction error (FRE), which is the $ell$-norm of the difference between the original feature in the high-dimensional space and the pre-image of its low-dimensional reduced embedding, is extremely effective for anomaly detection.
arXiv Detail & Related papers (2022-11-23T01:03:20Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - AnoViT: Unsupervised Anomaly Detection and Localization with Vision
Transformer-based Encoder-Decoder [3.31490164885582]
We propose a vision transformer-based encoder-decoder model, named AnoViT, to reflect normal information by additionally learning the global relationship between image patches.
The proposed model performed better than the convolution-based model on three benchmark datasets.
arXiv Detail & Related papers (2022-03-21T09:01:37Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
We introduce a novel technique, DAAIN, to detect out-of-distribution (OOD) inputs and adversarial attacks (AA)
Our approach monitors the inner workings of a neural network and learns a density estimator of the activation distribution.
Our model can be trained on a single GPU making it compute efficient and deployable without requiring specialized accelerators.
arXiv Detail & Related papers (2021-05-30T22:07:13Z) - PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and
Localization [64.39761523935613]
We present a new framework for Patch Distribution Modeling, PaDiM, to concurrently detect and localize anomalies in images.
PaDiM makes use of a pretrained convolutional neural network (CNN) for patch embedding.
It also exploits correlations between the different semantic levels of CNN to better localize anomalies.
arXiv Detail & Related papers (2020-11-17T17:29:18Z) - Unsupervised Metric Relocalization Using Transform Consistency Loss [66.19479868638925]
Training networks to perform metric relocalization traditionally requires accurate image correspondences.
We propose a self-supervised solution, which exploits a key insight: localizing a query image within a map should yield the same absolute pose, regardless of the reference image used for registration.
We evaluate our framework on synthetic and real-world data, showing our approach outperforms other supervised methods when a limited amount of ground-truth information is available.
arXiv Detail & Related papers (2020-11-01T19:24:27Z) - Anomaly localization by modeling perceptual features [3.04585143845864]
Feature-Augmented VAE is trained by reconstructing the input image in pixel space, and also in several different feature spaces.
It achieves clear improvement over state-of-the-art methods on the MVTec anomaly detection and localization datasets.
arXiv Detail & Related papers (2020-08-12T15:09:13Z) - Making Affine Correspondences Work in Camera Geometry Computation [62.7633180470428]
Local features provide region-to-region rather than point-to-point correspondences.
We propose guidelines for effective use of region-to-region matches in the course of a full model estimation pipeline.
Experiments show that affine solvers can achieve accuracy comparable to point-based solvers at faster run-times.
arXiv Detail & Related papers (2020-07-20T12:07:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.