A Multi-Task Deep Learning Framework to Localize the Eloquent Cortex in
Brain Tumor Patients Using Dynamic Functional Connectivity
- URL: http://arxiv.org/abs/2011.08813v1
- Date: Tue, 17 Nov 2020 18:18:09 GMT
- Title: A Multi-Task Deep Learning Framework to Localize the Eloquent Cortex in
Brain Tumor Patients Using Dynamic Functional Connectivity
- Authors: Naresh Nandakumar, Niharika Shimona D'souza, Komal Manzoor, Jay J.
Pillai, Sachin K. Gujar, Haris I. Sair, and Archana Venkataraman
- Abstract summary: We present a novel deep learning framework that uses dynamic functional connectivity to simultaneously localize the language and motor areas of the eloquent cortex in brain tumor patients.
Our model achieves higher localization accuracies than conventional deep learning approaches and can identify bilateral language areas even when trained on left-hemisphere lateralized cases.
- Score: 7.04584289867204
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel deep learning framework that uses dynamic functional
connectivity to simultaneously localize the language and motor areas of the
eloquent cortex in brain tumor patients. Our method leverages convolutional
layers to extract graph-based features from the dynamic connectivity matrices
and a long-short term memory (LSTM) attention network to weight the relevant
time points during classification. The final stage of our model employs
multi-task learning to identify different eloquent subsystems. Our unique
training strategy finds a shared representation between the cognitive networks
of interest, which enables us to handle missing patient data. We evaluate our
method on resting-state fMRI data from 56 brain tumor patients while using task
fMRI activations as surrogate ground-truth labels for training and testing. Our
model achieves higher localization accuracies than conventional deep learning
approaches and can identify bilateral language areas even when trained on
left-hemisphere lateralized cases. Hence, our method may ultimately be useful
for preoperative mapping in tumor patients.
Related papers
- A Lesion-aware Edge-based Graph Neural Network for Predicting Language Ability in Patients with Post-stroke Aphasia [12.129896943547912]
We propose a lesion-aware graph neural network (LEGNet) to predict language ability from resting-state fMRI (rs-fMRI) connectivity in patients with post-stroke aphasia.
Our model integrates three components: an edge-based learning module that encodes functional connectivity between brain regions, a lesion encoding module, and a subgraph learning module.
arXiv Detail & Related papers (2024-09-03T21:28:48Z) - Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
We present a two-step segmentation framework employing Knowledge-Guided Prompt Learning (KGPL) for brain MRI.
Specifically, we first pre-train segmentation models on large-scale datasets with sub-optimal labels.
The introduction of knowledge-wise prompts captures semantic relationships between anatomical variability and biological processes.
arXiv Detail & Related papers (2024-07-31T04:32:43Z) - BrainMAE: A Region-aware Self-supervised Learning Framework for Brain Signals [11.030708270737964]
We propose Brain Masked Auto-Encoder (BrainMAE) for learning representations directly from fMRI time-series data.
BrainMAE consistently outperforms established baseline methods by significant margins in four distinct downstream tasks.
arXiv Detail & Related papers (2024-06-24T19:16:24Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - DSAM: A Deep Learning Framework for Analyzing Temporal and Spatial Dynamics in Brain Networks [4.041732967881764]
Most rs-fMRI studies compute a single static functional connectivity matrix across brain regions of interest.
These approaches are at risk of oversimplifying brain dynamics and lack proper consideration of the goal at hand.
We propose a novel interpretable deep learning framework that learns goal-specific functional connectivity matrix directly from time series.
arXiv Detail & Related papers (2024-05-19T23:35:06Z) - A Deep Probabilistic Spatiotemporal Framework for Dynamic Graph Representation Learning with Application to Brain Disorder Identification [5.563162319586206]
Recent applications of pattern recognition techniques on brain connectome classification using functional connectivity (FC) are shifting towards acknowledging aspects of brain connectivity across time.
In this paper, a deep non-temporalal variation Bayes framework is proposed to learn to identify autism spectrum disorder (ASD) in human participants.
The framework incorporates a spatial-aware recurrent neural network with an attention-based message passing scheme to capture richtemporal patterns across dynamic FC networks.
arXiv Detail & Related papers (2023-02-14T18:42:17Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - Deep Representations for Time-varying Brain Datasets [4.129225533930966]
This paper builds an efficient graph neural network model that incorporates both region-mapped fMRI sequences and structural connectivities as inputs.
We find good representations of the latent brain dynamics through learning sample-level adaptive adjacency matrices.
These modules can be easily adapted to and are potentially useful for other applications outside the neuroscience domain.
arXiv Detail & Related papers (2022-05-23T21:57:31Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Relational Graph Learning on Visual and Kinematics Embeddings for
Accurate Gesture Recognition in Robotic Surgery [84.73764603474413]
We propose a novel online approach of multi-modal graph network (i.e., MRG-Net) to dynamically integrate visual and kinematics information.
The effectiveness of our method is demonstrated with state-of-the-art results on the public JIGSAWS dataset.
arXiv Detail & Related papers (2020-11-03T11:00:10Z) - Incremental Training of a Recurrent Neural Network Exploiting a
Multi-Scale Dynamic Memory [79.42778415729475]
We propose a novel incrementally trained recurrent architecture targeting explicitly multi-scale learning.
We show how to extend the architecture of a simple RNN by separating its hidden state into different modules.
We discuss a training algorithm where new modules are iteratively added to the model to learn progressively longer dependencies.
arXiv Detail & Related papers (2020-06-29T08:35:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.