Exploring Neural Entity Representations for Semantic Information
- URL: http://arxiv.org/abs/2011.08951v1
- Date: Tue, 17 Nov 2020 21:21:37 GMT
- Title: Exploring Neural Entity Representations for Semantic Information
- Authors: Andrew Runge and Eduard Hovy
- Abstract summary: We evaluate eight neural entity embedding methods on a set of simple probing tasks.
We show which methods are able to remember words used to describe entities, learn type, relationship and factual information, and identify how frequently an entity is mentioned.
We also compare these methods in a unified framework on two entity linking tasks and discuss how they generalize to different model architectures and datasets.
- Score: 4.925619556605419
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural methods for embedding entities are typically extrinsically evaluated
on downstream tasks and, more recently, intrinsically using probing tasks.
Downstream task-based comparisons are often difficult to interpret due to
differences in task structure, while probing task evaluations often look at
only a few attributes and models. We address both of these issues by evaluating
a diverse set of eight neural entity embedding methods on a set of simple
probing tasks, demonstrating which methods are able to remember words used to
describe entities, learn type, relationship and factual information, and
identify how frequently an entity is mentioned. We also compare these methods
in a unified framework on two entity linking tasks and discuss how they
generalize to different model architectures and datasets.
Related papers
- Coarse-to-Fine: Hierarchical Multi-task Learning for Natural Language
Understanding [51.31622274823167]
We propose a hierarchical framework with a coarse-to-fine paradigm, with the bottom level shared to all the tasks, the mid-level divided to different groups, and the top-level assigned to each of the tasks.
This allows our model to learn basic language properties from all tasks, boost performance on relevant tasks, and reduce the negative impact from irrelevant tasks.
arXiv Detail & Related papers (2022-08-19T02:46:20Z) - InstructionNER: A Multi-Task Instruction-Based Generative Framework for
Few-shot NER [31.32381919473188]
We propose a multi-task instruction-based generative framework, named InstructionNER, for low-resource named entity recognition.
Specifically, we reformulate the NER task as a generation problem, which enriches source sentences with task-specific instructions and answer options, then inferences the entities and types in natural language.
Experimental results show that our method consistently outperforms other baselines on five datasets in few-shot settings.
arXiv Detail & Related papers (2022-03-08T07:56:36Z) - On the relationship between disentanglement and multi-task learning [62.997667081978825]
We take a closer look at the relationship between disentanglement and multi-task learning based on hard parameter sharing.
We show that disentanglement appears naturally during the process of multi-task neural network training.
arXiv Detail & Related papers (2021-10-07T14:35:34Z) - Understanding Synonymous Referring Expressions via Contrastive Features [105.36814858748285]
We develop an end-to-end trainable framework to learn contrastive features on the image and object instance levels.
We conduct extensive experiments to evaluate the proposed algorithm on several benchmark datasets.
arXiv Detail & Related papers (2021-04-20T17:56:24Z) - Interpretable Multi-dataset Evaluation for Named Entity Recognition [110.64368106131062]
We present a general methodology for interpretable evaluation for the named entity recognition (NER) task.
The proposed evaluation method enables us to interpret the differences in models and datasets, as well as the interplay between them.
By making our analysis tool available, we make it easy for future researchers to run similar analyses and drive progress in this area.
arXiv Detail & Related papers (2020-11-13T10:53:27Z) - Towards a Flexible Embedding Learning Framework [15.604564543883122]
We propose an embedding learning framework that is flexible in terms of the relationships that can be embedded into the learned representations.
A sampling mechanism is carefully designed to establish a direct connection between the input and the information captured by the output embeddings.
Our empirical results demonstrate that the proposed framework, in conjunction with a set of relevant entity-relation-matrices, outperforms the existing state-of-the-art approaches in various data mining tasks.
arXiv Detail & Related papers (2020-09-23T08:00:56Z) - Few-shot Visual Reasoning with Meta-analogical Contrastive Learning [141.2562447971]
We propose to solve a few-shot (or low-shot) visual reasoning problem, by resorting to analogical reasoning.
We extract structural relationships between elements in both domains, and enforce them to be as similar as possible with analogical learning.
We validate our method on RAVEN dataset, on which it outperforms state-of-the-art method, with larger gains when the training data is scarce.
arXiv Detail & Related papers (2020-07-23T14:00:34Z) - Probing Linguistic Features of Sentence-Level Representations in Neural
Relation Extraction [80.38130122127882]
We introduce 14 probing tasks targeting linguistic properties relevant to neural relation extraction (RE)
We use them to study representations learned by more than 40 different encoder architecture and linguistic feature combinations trained on two datasets.
We find that the bias induced by the architecture and the inclusion of linguistic features are clearly expressed in the probing task performance.
arXiv Detail & Related papers (2020-04-17T09:17:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.