Link prediction in multiplex networks via triadic closure
- URL: http://arxiv.org/abs/2011.09126v1
- Date: Mon, 16 Nov 2020 20:25:08 GMT
- Title: Link prediction in multiplex networks via triadic closure
- Authors: Alberto Aleta, Marta Tuninetti, Daniela Paolotti, Yamir Moreno, and
Michele Starnini
- Abstract summary: Link prediction algorithms can help to understand the structure and dynamics of complex systems.
We show that different kind of relational data can be exploited to improve the prediction of new links.
We propose a novel link prediction algorithm by generalizing the Adamic-Adar method to multiplex networks composed by an arbitrary number of layers.
- Score: 0.9329978164030673
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Link prediction algorithms can help to understand the structure and dynamics
of complex systems, to reconstruct networks from incomplete data sets and to
forecast future interactions in evolving networks. Available algorithms based
on similarity between nodes are bounded by the limited amount of links present
in these networks. In this work, we reduce this latter intrinsic limitation and
show that different kind of relational data can be exploited to improve the
prediction of new links. To this aim, we propose a novel link prediction
algorithm by generalizing the Adamic-Adar method to multiplex networks composed
by an arbitrary number of layers, that encode diverse forms of interactions. We
show that the new metric outperforms the classical single-layered Adamic-Adar
score and other state-of-the-art methods, across several social, biological and
technological systems. As a byproduct, the coefficients that maximize the
Multiplex Adamic-Adar metric indicate how the information structured in a
multiplex network can be optimized for the link prediction task, revealing
which layers are redundant. Interestingly, this effect can be asymmetric with
respect to predictions in different layers. Our work paves the way for a deeper
understanding of the role of different relational data in predicting new
interactions and provides a new algorithm for link prediction in multiplex
networks that can be applied to a plethora of systems.
Related papers
- Set-based Neural Network Encoding Without Weight Tying [91.37161634310819]
We propose a neural network weight encoding method for network property prediction.
Our approach is capable of encoding neural networks in a model zoo of mixed architecture.
We introduce two new tasks for neural network property prediction: cross-dataset and cross-architecture.
arXiv Detail & Related papers (2023-05-26T04:34:28Z) - An Approach for Link Prediction in Directed Complex Networks based on
Asymmetric Similarity-Popularity [0.0]
This paper introduces a link prediction method designed explicitly for directed networks.
It is based on the similarity-popularity paradigm, which has recently proven successful in undirected networks.
The algorithms approximate the hidden similarities as shortest path distances using edge weights that capture and factor out the links' asymmetry and nodes' popularity.
arXiv Detail & Related papers (2022-07-15T11:03:25Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
Existing algorithms for uncertainty estimation require modifying the model architecture and training procedure.
This work proposes a new algorithm that can be applied to a given trained neural network and produces approximate prediction intervals.
arXiv Detail & Related papers (2022-05-06T13:18:31Z) - Link Prediction with Contextualized Self-Supervision [63.25455976593081]
Link prediction aims to infer the existence of a link between two nodes in a network.
Traditional link prediction algorithms are hindered by three major challenges -- link sparsity, node attribute noise and network dynamics.
We propose a Contextualized Self-Supervised Learning framework that fully exploits structural context prediction for link prediction.
arXiv Detail & Related papers (2022-01-25T03:12:32Z) - CCasGNN: Collaborative Cascade Prediction Based on Graph Neural Networks [0.49269463638915806]
Cascade prediction aims at modeling information diffusion in the network.
Recent efforts devoted to combining network structure and sequence features by graph neural networks and recurrent neural networks.
We propose a novel method CCasGNN considering the individual profile, structural features, and sequence information.
arXiv Detail & Related papers (2021-12-07T11:37:36Z) - Reinforced Neighborhood Selection Guided Multi-Relational Graph Neural
Networks [68.9026534589483]
RioGNN is a novel Reinforced, recursive and flexible neighborhood selection guided multi-relational Graph Neural Network architecture.
RioGNN can learn more discriminative node embedding with enhanced explainability due to the recognition of individual importance of each relation.
arXiv Detail & Related papers (2021-04-16T04:30:06Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - A Multiscale Graph Convolutional Network Using Hierarchical Clustering [0.0]
A novel architecture is explored which exploits this information through a multiscale decomposition.
A dendrogram is produced by a Girvan-Newman hierarchical clustering algorithm.
The architecture is tested on a benchmark citation network, demonstrating competitive performance.
arXiv Detail & Related papers (2020-06-22T18:13:03Z) - Link Prediction for Temporally Consistent Networks [6.981204218036187]
Link prediction estimates the next relationship in dynamic networks.
The use of adjacency matrix to represent dynamically evolving networks limits the ability to analytically learn from heterogeneous, sparse, or forming networks.
We propose a new method of canonically representing heterogeneous time-evolving activities as a temporally parameterized network model.
arXiv Detail & Related papers (2020-06-06T07:28:03Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z) - Modeling Dynamic Heterogeneous Network for Link Prediction using
Hierarchical Attention with Temporal RNN [16.362525151483084]
We propose a novel dynamic heterogeneous network embedding method, termed as DyHATR.
It uses hierarchical attention to learn heterogeneous information and incorporates recurrent neural networks with temporal attention to capture evolutionary patterns.
We benchmark our method on four real-world datasets for the task of link prediction.
arXiv Detail & Related papers (2020-04-01T17:16:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.