論文の概要: Online Exemplar Fine-Tuning for Image-to-Image Translation
- arxiv url: http://arxiv.org/abs/2011.09330v1
- Date: Wed, 18 Nov 2020 15:13:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-24 04:29:31.383298
- Title: Online Exemplar Fine-Tuning for Image-to-Image Translation
- Title(参考訳): 画像間翻訳のためのオンラインファインチューニング
- Authors: Taewon Kang, Soohyun Kim, Sunwoo Kim, Seungryong Kim
- Abstract要約: ディープ畳み込みニューラルネットワーク(CNN)において、既存の画像から画像への変換を解決するには、ネットワークパラメータを最適化するためのトレーニングフェーズが必要である。
入力画像ペアが与えられたオンライン最適化により,先進的な翻訳を初めて解決する新しいフレームワークを提案する。
我々のフレームワークは、既存の手法の主な課題であるオフライントレーニングフェーズを必要とせず、オンラインの最適化を可能にするためにトレーニング済みのネットワークを必要としています。
- 参考スコア(独自算出の注目度): 32.556050882376965
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing techniques to solve exemplar-based image-to-image translation within
deep convolutional neural networks (CNNs) generally require a training phase to
optimize the network parameters on domain-specific and task-specific
benchmarks, thus having limited applicability and generalization ability. In
this paper, we propose a novel framework, for the first time, to solve
exemplar-based translation through an online optimization given an input image
pair, called online exemplar fine-tuning (OEFT), in which we fine-tune the
off-the-shelf and general-purpose networks to the input image pair themselves.
We design two sub-networks, namely correspondence fine-tuning and multiple GAN
inversion, and optimize these network parameters and latent codes, starting
from the pre-trained ones, with well-defined loss functions. Our framework does
not require the off-line training phase, which has been the main challenge of
existing methods, but the pre-trained networks to enable optimization in
online. Experimental results prove that our framework is effective in having a
generalization power to unseen image pairs and clearly even outperforms the
state-of-the-arts needing the intensive training phase.
- Abstract(参考訳): ディープ畳み込みニューラルネットワーク(CNN)において、既存の画像から画像への変換を解決する技術は、一般に、ドメイン固有およびタスク固有ベンチマーク上のネットワークパラメータを最適化するトレーニングフェーズを必要とするため、適用性や一般化性が制限される。
本稿では,本論文で提案するオンライン・エクセプラー・ファイン・チューニング(oeft)と呼ばれるオンライン画像対が与えられた場合,オンライン・最適化によるexemplar-based translation(exemplar fine-tuning)の解法を初めて提案する。
我々は、対応微調整と複数のGANインバージョンという2つのサブネットワークを設計し、これらのネットワークパラメータと潜時符号の最適化を行う。
我々のフレームワークは、既存の手法の主な課題であるオフライントレーニングフェーズを必要とせず、オンラインの最適化を可能にするためにトレーニング済みのネットワークを必要としています。
実験結果から,本フレームワークは画像ペアを認識不能にし,集中的なトレーニングフェーズを必要とする最先端技術よりも明らかに優れる。
関連論文リスト
- Rotation Equivariant Proximal Operator for Deep Unfolding Methods in Image Restoration [62.41329042683779]
本稿では, 回転対称性を組み込んだ高精度な回転同変近位ネットワークを提案する。
本研究は, 回転対称性の先行を深く展開する枠組みに効果的に組み込む, 高精度な回転同変近位ネットワークを提案する。
論文 参考訳(メタデータ) (2023-12-25T11:53:06Z) - Hyper-VolTran: Fast and Generalizable One-Shot Image to 3D Object
Structure via HyperNetworks [53.67497327319569]
画像から3Dまでを1つの視点から解く新しいニューラルレンダリング手法を提案する。
提案手法では, 符号付き距離関数を表面表現として使用し, 幾何エンコードボリュームとハイパーネットワークスによる一般化可能な事前処理を取り入れた。
本実験は,一貫した結果と高速な生成による提案手法の利点を示す。
論文 参考訳(メタデータ) (2023-12-24T08:42:37Z) - D3C2-Net: Dual-Domain Deep Convolutional Coding Network for Compressive
Sensing [9.014593915305069]
深部展開ネットワーク(DUN)は圧縮センシング(CS)において顕著な成功を収めた
提案したフレームワークをディープニューラルネットワークに展開することにより、新たなデュアルドメインディープ畳み込み符号化ネットワーク(D3C2-Net)をさらに設計する。
自然画像とMR画像の実験により、我々のD3C2-Netは、他の最先端技術よりも高い性能と精度・複雑さのトレードオフを達成することが示された。
論文 参考訳(メタデータ) (2022-07-27T14:52:32Z) - Low-light Image Enhancement by Retinex Based Algorithm Unrolling and
Adjustment [50.13230641857892]
本稿では,低照度画像強調(LIE)問題に対する新たなディープラーニングフレームワークを提案する。
提案フレームワークは,大域的明るさと局所的明るさ感度の両方を考慮したアルゴリズムアンロールと調整ネットワークに着想を得た分解ネットワークを含む。
一連の典型的なLIEデータセットの実験では,既存の手法と比較して,定量的かつ視覚的に,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2022-02-12T03:59:38Z) - Deep Translation Prior: Test-time Training for Photorealistic Style
Transfer [36.82737412912885]
近年のCNN(Deep Convolutional Neural Network)におけるフォトリアリスティックなスタイル転送の解決には,大規模データセットからの集中的なトレーニングが必要となる。
提案手法はDTP(Deep Translation Prior)とよばれる新しいフレームワークで,与えられた入力画像対とトレーニングされていないネットワークをテストタイムでトレーニングすることで,フォトリアリスティックなスタイルの転送を実現する。
論文 参考訳(メタデータ) (2021-12-12T04:54:27Z) - Joint inference and input optimization in equilibrium networks [68.63726855991052]
ディープ均衡モデル(Deep equilibrium model)は、従来のネットワークの深さを予測し、代わりに単一の非線形層の固定点を見つけることによってネットワークの出力を計算するモデルのクラスである。
この2つの設定の間には自然なシナジーがあることが示されています。
この戦略は、生成モデルのトレーニングや、潜時符号の最適化、デノベートやインペインティングといった逆問題に対するトレーニングモデル、対逆トレーニング、勾配に基づくメタラーニングなど、様々なタスクにおいて実証される。
論文 参考訳(メタデータ) (2021-11-25T19:59:33Z) - Stochastic Primal-Dual Deep Unrolling Networks for Imaging Inverse
Problems [3.7819322027528113]
本稿では,画像逆問題に対する高効率ディープアンローリングネットワークを提案する。
アンローリングネットワークでは、フォワード演算子とアジョイント演算子のサブセットのみを使用します。
以上の結果から,X線CTにおけるアプローチの有効性が示唆された。
論文 参考訳(メタデータ) (2021-10-19T16:46:03Z) - Smoother Network Tuning and Interpolation for Continuous-level Image
Processing [7.730087303035803]
フィルタ遷移ネットワーク(FTN)は、連続学習のための構造的にスムーズなモジュールである。
FTNは様々なタスクやネットワークをまたいでうまく一般化し、望ましくない副作用を少なくする。
FTNの安定学習のために,IDマッピングを用いた非線形ニューラルネットワーク層を提案する。
論文 参考訳(メタデータ) (2020-10-05T18:29:52Z) - A Flexible Framework for Designing Trainable Priors with Adaptive
Smoothing and Game Encoding [57.1077544780653]
我々は、前方通過を非滑らかな凸最適化問題として解釈できるニューラルネットワーク層の設計とトレーニングのための一般的なフレームワークを紹介する。
グラフのノードに代表されるローカルエージェントによって解決され、正規化関数を介して相互作用する凸ゲームに焦点を当てる。
このアプローチは、訓練可能なエンドツーエンドのディープモデル内で、古典的な画像の事前使用を可能にするため、画像の問題を解決するために魅力的である。
論文 参考訳(メタデータ) (2020-06-26T08:34:54Z) - Dynamic Hierarchical Mimicking Towards Consistent Optimization
Objectives [73.15276998621582]
一般化能力を高めたCNN訓練を推進するための汎用的特徴学習機構を提案する。
DSNに部分的にインスパイアされた私たちは、ニューラルネットワークの中間層から微妙に設計されたサイドブランチをフォークしました。
カテゴリ認識タスクとインスタンス認識タスクの両方の実験により,提案手法の大幅な改善が示された。
論文 参考訳(メタデータ) (2020-03-24T09:56:13Z) - Regularized Adaptation for Stable and Efficient Continuous-Level
Learning on Image Processing Networks [7.730087303035803]
フィルタ遷移ネットワーク(FTN)を用いた新しい連続レベル学習フレームワークを提案する。
FTNは、新しいレベルに容易に適応できる非線形モジュールであり、望ましくない副作用を防ぐために正規化されている。
様々な画像処理結果から,FTNの性能は適応性および適応性において安定であることが示唆された。
論文 参考訳(メタデータ) (2020-03-11T07:46:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。