Hole spin qubits in Si FinFETs with fully tunable spin-orbit coupling
and sweet spots for charge noise
- URL: http://arxiv.org/abs/2011.09417v2
- Date: Tue, 23 Mar 2021 18:17:23 GMT
- Title: Hole spin qubits in Si FinFETs with fully tunable spin-orbit coupling
and sweet spots for charge noise
- Authors: Stefano Bosco and Bence Het\'enyi and Daniel Loss
- Abstract summary: We show theoretically that hole Si FinFETs are not only very compatible with modern CMOS technology, but they present operational sweet spots where the charge noise is completely removed.
We identify designs that maximize the qubit performance and could pave the way towards a scalable spin-based quantum computer.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The strong spin-orbit coupling in hole spin qubits enables fast and
electrically tunable gates, but at the same time enhances the susceptibility of
the qubit to charge noise. Suppressing this noise is a significant challenge in
semiconductor quantum computing. Here, we show theoretically that hole Si
FinFETs are not only very compatible with modern CMOS technology, but they
present operational sweet spots where the charge noise is completely removed.
The presence of these sweet spots is a result of the interplay between the
anisotropy of the material and the triangular shape of the FinFET
cross-section, and it does not require an extreme fine-tuning of the
electrostatics of the device. We present how the sweet spots appear in FinFETs
grown along different crystallographic axes and we study in detail how the
behaviour of these devices change when the cross-section area and aspect ratio
are varied. We identify designs that maximize the qubit performance and could
pave the way towards a scalable spin-based quantum computer.
Related papers
- A coherence sweet spot with enhanced dipolar coupling [0.0]
We demonstrate a compromise-free singlet-triplet (ST) qubit, where the qubit couples maximally to the driving field.
We demonstrate a spin qubit sweet spot maximizing the dipolar coupling and simultaneously minimizing the decoherence.
These findings pave the way for enhanced engineering of these nanomaterials for next-generation qubit technologies.
arXiv Detail & Related papers (2024-05-17T14:06:48Z) - Impact of electrostatic crosstalk on spin qubits in dense CMOS quantum
dot arrays [0.2529650288460727]
Current CMOS spin qubit processors consist of dense gate arrays to define the quantum dots.
Small but sizeable spin-orbit interactions can transfer this electrostatic crosstalk to the spin g-factors.
By studying the Stark shift from tens of spin qubits measured in nine different CMOS devices, we developed a theoretical frawework that explains how electric fields couple to the spin of the electrons.
arXiv Detail & Related papers (2023-09-04T22:44:24Z) - Control of an environmental spin defect beyond the coherence limit of a central spin [79.16635054977068]
We present a scalable approach to increase the size of electronic-spin registers.
We experimentally realize this approach to demonstrate the detection and coherent control of an unknown electronic spin outside the coherence limit of a central NV.
Our work paves the way for engineering larger quantum spin registers with the potential to advance nanoscale sensing, enable correlated noise spectroscopy for error correction, and facilitate the realization of spin-chain quantum wires for quantum communication.
arXiv Detail & Related papers (2023-06-29T17:55:16Z) - Bounds to electron spin qubit variability for scalable CMOS architectures [0.2500278693410567]
We chart the spin qubit variability due to the unavoidable atomic-scale roughness of the Si/SiO$$ interface, compiling experiments in 12 devices, and developing theoretical tools.
We correlate the effect of roughness with the variability in qubit position, deformation, valley splitting, valley phase, spin-orbit coupling and exchange coupling.
These variabilities are found to be bounded and lie within the tolerances for scalable architectures for quantum computing as long as robust control methods are incorporated.
arXiv Detail & Related papers (2023-03-27T00:52:39Z) - Resolving Fock states near the Kerr-free point of a superconducting
resonator [51.03394077656548]
We have designed a tunable nonlinear resonator terminated by a SNAIL (Superconducting Asymmetric Inductive eLement)
We have excited photons near this Kerr-free point and characterized the device using a transmon qubit.
arXiv Detail & Related papers (2022-10-18T09:55:58Z) - Enhancing the Coherence of Superconducting Quantum Bits with Electric
Fields [62.997667081978825]
We show that qubit coherence can be improved by tuning defects away from the qubit resonance using an applied DC-electric field.
We also discuss how local gate electrodes can be implemented in superconducting quantum processors to enable simultaneous in-situ coherence optimization of individual qubits.
arXiv Detail & Related papers (2022-08-02T16:18:30Z) - Hole spin qubits in thin curved quantum wells [0.0]
Hole spin qubits are frontrunner platforms for scalable quantum computers.
Fastest spin qubits to date are defined in long quantum dots with confinement directions.
In these systems the lifetime of the qubit is strongly limited by charge noise.
We propose a different, scalable qubit design, compatible with planar CMOS technology.
arXiv Detail & Related papers (2022-04-18T08:34:38Z) - Fully tunable hyperfine interactions of hole spin qubits in Si and Ge
quantum dots [0.0]
Hole spin qubits are frontrunner platforms for scalable quantum computers.
State-of-the-art devices suffer from noise originating from the hyperfine interactions with nuclear defects.
We show that these interactions have a highly tunable anisotropy that is controlled by device design and external electric fields.
arXiv Detail & Related papers (2021-06-25T16:31:42Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
We study the quantum dynamics of paramagnetic defects interacting with a nuclear spin bath at avoided crossings.
The proposed theoretical approach paves the way to designing the coherence properties of spin qubits from first principles.
arXiv Detail & Related papers (2020-10-21T15:37:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.