Impact of electrostatic crosstalk on spin qubits in dense CMOS quantum
dot arrays
- URL: http://arxiv.org/abs/2309.01849v1
- Date: Mon, 4 Sep 2023 22:44:24 GMT
- Title: Impact of electrostatic crosstalk on spin qubits in dense CMOS quantum
dot arrays
- Authors: Jesus D. Cifuentes, Tuomo Tanttu, Paul Steinacker, Santiago Serrano,
Ingvild Hansen, James P. Slack-Smith, Will Gilbert, Jonathan Y. Huang, Ensar
Vahapoglu, Ross C. C. Leon, Nard Dumoulin Stuyck, Kohei Itoh, Nikolay
Abrosimov, Hans-Joachim Pohl, Michael Thewalt, Arne Laucht, Chih Hwan Yang,
Christopher C. Escott, Fay E. Hudson, Wee Han Lim, Rajib Rahman, Andrew S.
Dzurak, and Andre Saraiva
- Abstract summary: Current CMOS spin qubit processors consist of dense gate arrays to define the quantum dots.
Small but sizeable spin-orbit interactions can transfer this electrostatic crosstalk to the spin g-factors.
By studying the Stark shift from tens of spin qubits measured in nine different CMOS devices, we developed a theoretical frawework that explains how electric fields couple to the spin of the electrons.
- Score: 0.2529650288460727
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum processors based on integrated nanoscale silicon spin qubits are a
promising platform for highly scalable quantum computation. Current CMOS spin
qubit processors consist of dense gate arrays to define the quantum dots,
making them susceptible to crosstalk from capacitive coupling between a dot and
its neighbouring gates. Small but sizeable spin-orbit interactions can transfer
this electrostatic crosstalk to the spin g-factors, creating a dependence of
the Larmor frequency on the electric field created by gate electrodes
positioned even tens of nanometers apart. By studying the Stark shift from tens
of spin qubits measured in nine different CMOS devices, we developed a
theoretical frawework that explains how electric fields couple to the spin of
the electrons in increasingly complex arrays, including those electric
fluctuations that limit qubit dephasing times $T_2^*$. The results will aid in
the design of robust strategies to scale CMOS quantum technology.
Related papers
- Longitudinal (curvature) couplings of an $N$-level qudit to a
superconducting resonator at the adiabatic limit and beyond [0.0]
We investigate the coupling between a multi-level system, or qudit, and a superconducting (SC) resonator's electromagnetic field.
For the first time, we derive Hamiltonians describing the longitudinal multi-level interactions in a general dispersive regime.
We provide examples illustrating the transition from adiabatic to dispersive coupling in different qubit systems.
arXiv Detail & Related papers (2023-12-05T20:33:59Z) - Control of an environmental spin defect beyond the coherence limit of a central spin [79.16635054977068]
We present a scalable approach to increase the size of electronic-spin registers.
We experimentally realize this approach to demonstrate the detection and coherent control of an unknown electronic spin outside the coherence limit of a central NV.
Our work paves the way for engineering larger quantum spin registers with the potential to advance nanoscale sensing, enable correlated noise spectroscopy for error correction, and facilitate the realization of spin-chain quantum wires for quantum communication.
arXiv Detail & Related papers (2023-06-29T17:55:16Z) - Bounds to electron spin qubit variability for scalable CMOS architectures [0.2500278693410567]
We chart the spin qubit variability due to the unavoidable atomic-scale roughness of the Si/SiO$$ interface, compiling experiments in 12 devices, and developing theoretical tools.
We correlate the effect of roughness with the variability in qubit position, deformation, valley splitting, valley phase, spin-orbit coupling and exchange coupling.
These variabilities are found to be bounded and lie within the tolerances for scalable architectures for quantum computing as long as robust control methods are incorporated.
arXiv Detail & Related papers (2023-03-27T00:52:39Z) - Jellybean quantum dots in silicon for qubit coupling and on-chip quantum
chemistry [0.6818394664182874]
Small size and excellent integrability of silicon metal-oxide-semiconductor (SiMOS) quantum dot spin qubits make them an attractive system for mass-manufacturable, scaled-up quantum processors.
This paper investigates the charge and spin characteristics of an elongated quantum dot for the prospects of acting as a qubit-qubit coupler.
arXiv Detail & Related papers (2022-08-08T12:24:46Z) - Enhancing the Coherence of Superconducting Quantum Bits with Electric
Fields [62.997667081978825]
We show that qubit coherence can be improved by tuning defects away from the qubit resonance using an applied DC-electric field.
We also discuss how local gate electrodes can be implemented in superconducting quantum processors to enable simultaneous in-situ coherence optimization of individual qubits.
arXiv Detail & Related papers (2022-08-02T16:18:30Z) - On-demand electrical control of spin qubits [0.49813399226871663]
We demonstrate a technique that enables a emphswitchable interaction between spins and orbital motion of electrons in silicon quantum dots.
The naturally weak effects of the relativistic spin-orbit interaction in silicon are enhanced by more than three orders of magnitude by controlling the energy quantisation of electrons in the nanostructure.
arXiv Detail & Related papers (2022-01-18T00:43:54Z) - Conditional quantum operation of two exchange-coupled single-donor spin
qubits in a MOS-compatible silicon device [48.7576911714538]
Silicon nanoelectronic devices can host single-qubit quantum logic operations with fidelity better than 99.9%.
For the spins of an electron bound to a single donor atom, introduced in the silicon by ion implantation, the quantum information can be stored for nearly 1 second.
Here we demonstrate the conditional, coherent control of an electron spin qubit in an exchange-coupled pair of $31$P donors implanted in silicon.
arXiv Detail & Related papers (2020-06-08T11:25:16Z) - Circuit Quantum Electrodynamics [62.997667081978825]
Quantum mechanical effects at the macroscopic level were first explored in Josephson junction-based superconducting circuits in the 1980s.
In the last twenty years, the emergence of quantum information science has intensified research toward using these circuits as qubits in quantum information processors.
The field of circuit quantum electrodynamics (QED) has now become an independent and thriving field of research in its own right.
arXiv Detail & Related papers (2020-05-26T12:47:38Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z) - Programmable two-qubit gates in capacitively coupled flopping-mode spin
qubits [0.0]
We show a versatile set of quantum gates between adjacent spin qubits defined in semiconductor quantum dots.
We calculate the estimated infidelity of different two-qubit gates in the most immediate possible experimental realizations.
arXiv Detail & Related papers (2020-03-04T15:37:21Z) - Entanglement generation via power-of-SWAP operations between dynamic
electron-spin qubits [62.997667081978825]
Surface acoustic waves (SAWs) can create moving quantum dots in piezoelectric materials.
We show how electron-spin qubits located on dynamic quantum dots can be entangled.
arXiv Detail & Related papers (2020-01-15T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.