Adaptive Contention Window Design using Deep Q-learning
- URL: http://arxiv.org/abs/2011.09418v1
- Date: Wed, 18 Nov 2020 17:31:18 GMT
- Title: Adaptive Contention Window Design using Deep Q-learning
- Authors: Abhishek Kumar, Gunjan Verma, Chirag Rao, Ananthram Swami, and
Santiago Segarra
- Abstract summary: We study the problem of adaptive contention window (CW) design for random-access wireless networks.
Our goal is to design an intelligent node that can dynamically adapt its minimum CW (MCW) parameter to maximize a network-level utility.
- Score: 46.49295424938727
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of adaptive contention window (CW) design for
random-access wireless networks. More precisely, our goal is to design an
intelligent node that can dynamically adapt its minimum CW (MCW) parameter to
maximize a network-level utility knowing neither the MCWs of other nodes nor
how these change over time. To achieve this goal, we adopt a reinforcement
learning (RL) framework where we circumvent the lack of system knowledge with
local channel observations and we reward actions that lead to high utilities.
To efficiently learn these preferred actions, we follow a deep Q-learning
approach, where the Q-value function is parametrized using a multi-layer
perception. In particular, we implement a rainbow agent, which incorporates
several empirical improvements over the basic deep Q-network. Numerical
experiments based on the NS3 simulator reveal that the proposed RL agent
performs close to optimal and markedly improves upon existing learning and
non-learning based alternatives.
Related papers
- Enhancing Spectrum Efficiency in 6G Satellite Networks: A GAIL-Powered Policy Learning via Asynchronous Federated Inverse Reinforcement Learning [67.95280175998792]
A novel adversarial imitation learning (GAIL)-powered policy learning approach is proposed for optimizing beamforming, spectrum allocation, and remote user equipment (RUE) association ins.
We employ inverse RL (IRL) to automatically learn reward functions without manual tuning.
We show that the proposed MA-AL method outperforms traditional RL approaches, achieving a $14.6%$ improvement in convergence and reward value.
arXiv Detail & Related papers (2024-09-27T13:05:02Z) - Advanced deep-reinforcement-learning methods for flow control: group-invariant and positional-encoding networks improve learning speed and quality [0.7421845364041001]
This study advances deep-reinforcement-learning (DRL) methods for flow control.
We focus on integrating group-invariant networks and positional encoding into DRL architectures.
The proposed methods are verified using a case study of Rayleigh-B'enard convection.
arXiv Detail & Related papers (2024-07-25T07:24:41Z) - Principled Architecture-aware Scaling of Hyperparameters [69.98414153320894]
Training a high-quality deep neural network requires choosing suitable hyperparameters, which is a non-trivial and expensive process.
In this work, we precisely characterize the dependence of initializations and maximal learning rates on the network architecture.
We demonstrate that network rankings can be easily changed by better training networks in benchmarks.
arXiv Detail & Related papers (2024-02-27T11:52:49Z) - ILP-based Resource Optimization Realized by Quantum Annealing for Optical Wide-area Communication Networks -- A Framework for Solving Combinatorial Problems of a Real-world Application by Quantum Annealing [5.924780594614675]
In recent works we demonstrated how such a problem could be cast as a quadratic unconstrained binary optimization (QUBO) problem that can be embedded onto the D-Wave AdvantageTM quantum annealer system.
Here we report on our investigations for optimizing system parameters, and how we incorporate machine learning (ML) techniques to further improve on the quality of solutions.
We successfully implement this NN in a simple integer linear programming (ILP) example, demonstrating how the NN can fully map out the solution space that was not captured by D-Wave.
arXiv Detail & Related papers (2024-01-01T17:52:58Z) - Pointer Networks with Q-Learning for Combinatorial Optimization [55.2480439325792]
We introduce the Pointer Q-Network (PQN), a hybrid neural architecture that integrates model-free Q-value policy approximation with Pointer Networks (Ptr-Nets)
Our empirical results demonstrate the efficacy of this approach, also testing the model in unstable environments.
arXiv Detail & Related papers (2023-11-05T12:03:58Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
We propose a novel Reinforcement Learning (RL) approach to design generic Congestion Control (CC) algorithms.
Our solution, MARLIN, uses the Soft Actor-Critic algorithm to maximize both entropy and return.
We trained MARLIN on a real network with varying background traffic patterns to overcome the sim-to-real mismatch.
arXiv Detail & Related papers (2023-02-02T18:27:20Z) - Evolutionary Deep Reinforcement Learning for Dynamic Slice Management in
O-RAN [11.464582983164991]
New open radio access network (O-RAN) with distinguishing features such as flexible design, disaggregated virtual and programmable components, and intelligent closed-loop control was developed.
O-RAN slicing is being investigated as a critical strategy for ensuring network quality of service (QoS) in the face of changing circumstances.
This paper introduces a novel framework able to manage the network slices through provisioned resources intelligently.
arXiv Detail & Related papers (2022-08-30T17:00:53Z) - Analytically Tractable Bayesian Deep Q-Learning [0.0]
We adapt the temporal difference Q-learning framework to make it compatible with the tractable approximate Gaussian inference (TAGI)
We demonstrate that TAGI can reach a performance comparable to backpropagation-trained networks.
arXiv Detail & Related papers (2021-06-21T13:11:52Z) - Deep Multi-Task Learning for Cooperative NOMA: System Design and
Principles [52.79089414630366]
We develop a novel deep cooperative NOMA scheme, drawing upon the recent advances in deep learning (DL)
We develop a novel hybrid-cascaded deep neural network (DNN) architecture such that the entire system can be optimized in a holistic manner.
arXiv Detail & Related papers (2020-07-27T12:38:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.