Advanced deep-reinforcement-learning methods for flow control: group-invariant and positional-encoding networks improve learning speed and quality
- URL: http://arxiv.org/abs/2407.17822v2
- Date: Fri, 25 Oct 2024 15:27:40 GMT
- Title: Advanced deep-reinforcement-learning methods for flow control: group-invariant and positional-encoding networks improve learning speed and quality
- Authors: Joongoo Jeon, Jean Rabault, Joel Vasanth, Francisco Alcántara-Ávila, Shilaj Baral, Ricardo Vinuesa,
- Abstract summary: This study advances deep-reinforcement-learning (DRL) methods for flow control.
We focus on integrating group-invariant networks and positional encoding into DRL architectures.
The proposed methods are verified using a case study of Rayleigh-B'enard convection.
- Score: 0.7421845364041001
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Flow control is key to maximize energy efficiency in a wide range of applications. However, traditional flow-control methods face significant challenges in addressing non-linear systems and high-dimensional data, limiting their application in realistic energy systems. This study advances deep-reinforcement-learning (DRL) methods for flow control, particularly focusing on integrating group-invariant networks and positional encoding into DRL architectures. Our methods leverage multi-agent reinforcement learning (MARL) to exploit policy invariance in space, in combination with group-invariant networks to ensure local symmetry invariance. Additionally, a positional encoding inspired by the transformer architecture is incorporated to provide location information to the agents, mitigating action constraints from strict invariance. The proposed methods are verified using a case study of Rayleigh-B\'enard convection, where the goal is to minimize the Nusselt number Nu. The group-invariant neural networks (GI-NNs) show faster convergence compared to the base MARL, achieving better average policy performance. The GI-NNs not only cut DRL training time in half but also notably enhance learning reproducibility. Positional encoding further enhances these results, effectively reducing the minimum Nu and stabilizing convergence. Interestingly, group invariant networks specialize in improving learning speed and positional encoding specializes in improving learning quality. These results demonstrate that choosing a suitable feature-representation method according to the purpose as well as the characteristics of each control problem is essential. We believe that the results of this study will not only inspire novel DRL methods with invariant and unique representations, but also provide useful insights for industrial applications.
Related papers
- Enhancing Spectrum Efficiency in 6G Satellite Networks: A GAIL-Powered Policy Learning via Asynchronous Federated Inverse Reinforcement Learning [67.95280175998792]
A novel adversarial imitation learning (GAIL)-powered policy learning approach is proposed for optimizing beamforming, spectrum allocation, and remote user equipment (RUE) association ins.
We employ inverse RL (IRL) to automatically learn reward functions without manual tuning.
We show that the proposed MA-AL method outperforms traditional RL approaches, achieving a $14.6%$ improvement in convergence and reward value.
arXiv Detail & Related papers (2024-09-27T13:05:02Z) - SINDy-RL: Interpretable and Efficient Model-Based Reinforcement Learning [5.59265003686955]
We introduce SINDy-RL, a framework for combining SINDy and deep reinforcement learning.
SINDy-RL achieves comparable performance to state-of-the-art DRL algorithms.
We demonstrate the effectiveness of our approaches on benchmark control environments and challenging fluids problems.
arXiv Detail & Related papers (2024-03-14T05:17:39Z) - A Neuromorphic Architecture for Reinforcement Learning from Real-Valued
Observations [0.34410212782758043]
Reinforcement Learning (RL) provides a powerful framework for decision-making in complex environments.
This paper presents a novel Spiking Neural Network (SNN) architecture for solving RL problems with real-valued observations.
arXiv Detail & Related papers (2023-07-06T12:33:34Z) - Learning k-Level Structured Sparse Neural Networks Using Group Envelope Regularization [4.0554893636822]
We introduce a novel approach to deploy large-scale Deep Neural Networks on constrained resources.
The method speeds up inference time and aims to reduce memory demand and power consumption.
arXiv Detail & Related papers (2022-12-25T15:40:05Z) - A Distributed Deep Reinforcement Learning Technique for Application
Placement in Edge and Fog Computing Environments [31.326505188936746]
Several Deep Reinforcement Learning (DRL)-based placement techniques have been proposed in fog/edge computing environments.
We propose an actor-critic-based distributed application placement technique, working based on the IMPortance weighted Actor-Learner Architectures (IMPALA)
arXiv Detail & Related papers (2021-10-24T11:25:03Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
This work develops a new approach that enables data-driven methods to continuously learn and optimize resource allocation strategies in a dynamic environment.
We propose to build the notion of continual learning into wireless system design, so that the learning model can incrementally adapt to the new episodes.
Our design is based on a novel bilevel optimization formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2021-05-03T07:23:39Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z) - Deep Multi-Task Learning for Cooperative NOMA: System Design and
Principles [52.79089414630366]
We develop a novel deep cooperative NOMA scheme, drawing upon the recent advances in deep learning (DL)
We develop a novel hybrid-cascaded deep neural network (DNN) architecture such that the entire system can be optimized in a holistic manner.
arXiv Detail & Related papers (2020-07-27T12:38:37Z) - Regularizing Deep Networks with Semantic Data Augmentation [44.53483945155832]
We propose a novel semantic data augmentation algorithm to complement traditional approaches.
The proposed method is inspired by the intriguing property that deep networks are effective in learning linearized features.
We show that the proposed implicit semantic data augmentation (ISDA) algorithm amounts to minimizing a novel robust CE loss.
arXiv Detail & Related papers (2020-07-21T00:32:44Z) - An Ode to an ODE [78.97367880223254]
We present a new paradigm for Neural ODE algorithms, called ODEtoODE, where time-dependent parameters of the main flow evolve according to a matrix flow on the group O(d)
This nested system of two flows provides stability and effectiveness of training and provably solves the gradient vanishing-explosion problem.
arXiv Detail & Related papers (2020-06-19T22:05:19Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent reflecting surface (IRS) is a promising technology to assist downlink information transmissions from a multi-antenna access point (AP) to a receiver.
We minimize the AP's transmit power by a joint optimization of the AP's active beamforming and the IRS's passive beamforming.
We propose a deep reinforcement learning (DRL) approach that can adapt the beamforming strategies from past experiences.
arXiv Detail & Related papers (2020-05-25T01:42:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.