A Cognitive Approach based on the Actionable Knowledge Graph for
supporting Maintenance Operations
- URL: http://arxiv.org/abs/2011.09554v1
- Date: Wed, 18 Nov 2020 21:53:00 GMT
- Title: A Cognitive Approach based on the Actionable Knowledge Graph for
supporting Maintenance Operations
- Authors: Giuseppe Fenza, Mariacristina Gallo, Vincenzo Loia, Domenico Marino,
Francesco Orciuoli
- Abstract summary: We propose a cognitive system that learns from past interventions to generate contextual recommendations for improving maintenance practices.
The system uses formal conceptual models, incremental learning, and ranking algorithms to accomplish these objectives.
- Score: 3.3198770589233284
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the era of Industry 4.0, cognitive computing and its enabling technologies
(Artificial Intelligence, Machine Learning, etc.) allow to define systems able
to support maintenance by providing relevant information, at the right time,
retrieved from structured companies' databases, and unstructured documents,
like technical manuals, intervention reports, and so on. Moreover, contextual
information plays a crucial role in tailoring the support both during the
planning and the execution of interventions. Contextual information can be
detected with the help of sensors, wearable devices, indoor and outdoor
positioning systems, and object recognition capabilities (using fixed or
wearable cameras), all of which can collect historical data for further
analysis. In this work, we propose a cognitive system that learns from past
interventions to generate contextual recommendations for improving maintenance
practices in terms of time, budget, and scope. The system uses formal
conceptual models, incremental learning, and ranking algorithms to accomplish
these objectives.
Related papers
- Charting a Path to Efficient Onboarding: The Role of Software
Visualization [49.1574468325115]
The present study aims to explore the familiarity of managers, leaders, and developers with software visualization tools.
This approach incorporated quantitative and qualitative analyses of data collected from practitioners using questionnaires and semi-structured interviews.
arXiv Detail & Related papers (2024-01-17T21:30:45Z) - Model-Driven Engineering Method to Support the Formalization of Machine
Learning using SysML [0.0]
This work introduces a method supporting the collaborative definition of machine learning tasks by leveraging model-based engineering.
The method supports the identification and integration of various data sources, the required definition of semantic connections between data attributes, and the definition of data processing steps.
arXiv Detail & Related papers (2023-07-10T11:33:46Z) - Reinforcement and Deep Reinforcement Learning-based Solutions for
Machine Maintenance Planning, Scheduling Policies, and Optimization [1.6447597767676658]
This paper presents a literature review on the applications of reinforcement and deep reinforcement learning for maintenance planning and optimization problems.
By leveraging the condition monitoring data of systems and machines with reinforcement learning, smart maintenance planners can be developed, which is a precursor to achieving a smart factory.
arXiv Detail & Related papers (2023-07-07T22:47:29Z) - A Domain-Agnostic Approach for Characterization of Lifelong Learning
Systems [128.63953314853327]
"Lifelong Learning" systems are capable of 1) Continuous Learning, 2) Transfer and Adaptation, and 3) Scalability.
We show that this suite of metrics can inform the development of varied and complex Lifelong Learning systems.
arXiv Detail & Related papers (2023-01-18T21:58:54Z) - An Ontology for Defect Detection in Metal Additive Manufacturing [3.997680012976965]
Key for Industry 4.0 applications is to develop control systems capable of addressing data integration and semantic interoperability issues.
We provide the classification of process-induced defects known from the metal additive manufacturing literature.
Our knowledge base aims at enhancing the capabilities of additive manufacturing by adding further defect analysis terminology.
arXiv Detail & Related papers (2022-09-29T13:35:25Z) - What and How of Machine Learning Transparency: Building Bespoke
Explainability Tools with Interoperable Algorithmic Components [77.87794937143511]
This paper introduces a collection of hands-on training materials for explaining data-driven predictive models.
These resources cover the three core building blocks of this technique: interpretable representation composition, data sampling and explanation generation.
arXiv Detail & Related papers (2022-09-08T13:33:25Z) - Retrieval-Enhanced Machine Learning [110.5237983180089]
We describe a generic retrieval-enhanced machine learning framework, which includes a number of existing models as special cases.
REML challenges information retrieval conventions, presenting opportunities for novel advances in core areas, including optimization.
REML research agenda lays a foundation for a new style of information access research and paves a path towards advancing machine learning and artificial intelligence.
arXiv Detail & Related papers (2022-05-02T21:42:45Z) - From Distributed Machine Learning to Federated Learning: A Survey [49.7569746460225]
Federated learning emerges as an efficient approach to exploit distributed data and computing resources.
We propose a functional architecture of federated learning systems and a taxonomy of related techniques.
We present the distributed training, data communication, and security of FL systems.
arXiv Detail & Related papers (2021-04-29T14:15:11Z) - Towards Compliant Data Management Systems for Healthcare ML [6.057289837472806]
We review how data flows within machine learning projects in healthcare from source to storage to use in training algorithms and beyond.
Our objective is to design tools to detect and track sensitive data across machines and users across the life cycle of a project.
We build a prototype of the solution that demonstrates the difficulties in this domain.
arXiv Detail & Related papers (2020-11-15T15:27:51Z) - Trustworthy AI Inference Systems: An Industry Research View [58.000323504158054]
We provide an industry research view for approaching the design, deployment, and operation of trustworthy AI inference systems.
We highlight opportunities and challenges in AI systems using trusted execution environments.
We outline areas of further development that require the global collective attention of industry, academia, and government researchers.
arXiv Detail & Related papers (2020-08-10T23:05:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.