An Ontology for Defect Detection in Metal Additive Manufacturing
- URL: http://arxiv.org/abs/2210.04772v1
- Date: Thu, 29 Sep 2022 13:35:25 GMT
- Title: An Ontology for Defect Detection in Metal Additive Manufacturing
- Authors: Massimo Carraturo, Andrea Mazzullo
- Abstract summary: Key for Industry 4.0 applications is to develop control systems capable of addressing data integration and semantic interoperability issues.
We provide the classification of process-induced defects known from the metal additive manufacturing literature.
Our knowledge base aims at enhancing the capabilities of additive manufacturing by adding further defect analysis terminology.
- Score: 3.997680012976965
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: A key challenge for Industry 4.0 applications is to develop control systems
for automated manufacturing services that are capable of addressing both data
integration and semantic interoperability issues, as well as monitoring and
decision making tasks. To address such an issue in advanced manufacturing
systems, principled knowledge representation approaches based on formal
ontologies have been proposed as a foundation to information management and
maintenance in presence of heterogeneous data sources. In addition, ontologies
provide reasoning and querying capabilities to aid domain experts and end users
in the context of constraint validation and decision making. Finally,
ontology-based approaches to advanced manufacturing services can support the
explainability and interpretability of the behaviour of monitoring, control,
and simulation systems that are based on black-box machine learning algorithms.
In this work, we provide a novel ontology for the classification of
process-induced defects known from the metal additive manufacturing literature.
Together with a formal representation of the characterising features and
sources of defects, we integrate our knowledge base with state-of-the-art
ontologies in the field. Our knowledge base aims at enhancing the modelling
capabilities of additive manufacturing ontologies by adding further defect
analysis terminology and diagnostic inference features.
Related papers
- Diagnostic Reasoning in Natural Language: Computational Model and Application [68.47402386668846]
We investigate diagnostic abductive reasoning (DAR) in the context of language-grounded tasks (NL-DAR)
We propose a novel modeling framework for NL-DAR based on Pearl's structural causal models.
We use the resulting dataset to investigate the human decision-making process in NL-DAR.
arXiv Detail & Related papers (2024-09-09T06:55:37Z) - AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review [0.29998889086656577]
This study proposes an AIOps terminology and taxonomy, establishing a structured incident management procedure and providing guidelines for constructing an AIOps framework.
The goal is to provide a comprehensive review of technical and research aspects in AIOps for incident management, aiming to structure knowledge, identify gaps, and establish a foundation for future developments in the field.
arXiv Detail & Related papers (2024-04-01T17:32:22Z) - What Does Evaluation of Explainable Artificial Intelligence Actually Tell Us? A Case for Compositional and Contextual Validation of XAI Building Blocks [16.795332276080888]
We propose a fine-grained validation framework for explainable artificial intelligence systems.
We recognise their inherent modular structure: technical building blocks, user-facing explanatory artefacts and social communication protocols.
arXiv Detail & Related papers (2024-03-19T13:45:34Z) - Integrating LLMs for Explainable Fault Diagnosis in Complex Systems [0.0]
This paper introduces an integrated system designed to enhance the explainability of fault diagnostics in complex systems, such as nuclear power plants.
By combining a physics-based diagnostic tool with a Large Language Model, we offer a novel solution that not only identifies faults but also provides clear, understandable explanations of their causes and implications.
arXiv Detail & Related papers (2024-02-08T22:11:21Z) - A Systematic Review of Available Datasets in Additive Manufacturing [56.684125592242445]
In-situ monitoring incorporating visual and other sensor technologies allows the collection of extensive datasets during the Additive Manufacturing process.
These datasets have potential for determining the quality of the manufactured output and the detection of defects through the use of Machine Learning.
This systematic review investigates the availability of open image-based datasets originating from AM processes that align with a number of pre-defined selection criteria.
arXiv Detail & Related papers (2024-01-27T16:13:32Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
Anomaly detection plays a fundamental role in various applications.
It is challenging for existing methods to handle the scenarios where the instances are systems whose characteristics are not readily observed as data.
We develop an end-to-end approach which includes an encoder-decoder module that learns system embeddings.
arXiv Detail & Related papers (2023-04-21T02:20:24Z) - Deep Learning based pipeline for anomaly detection and quality
enhancement in industrial binder jetting processes [68.8204255655161]
Anomaly detection describes methods of finding abnormal states, instances or data points that differ from a normal value space.
This paper contributes to a data-centric way of approaching artificial intelligence in industrial production.
arXiv Detail & Related papers (2022-09-21T08:14:34Z) - System Resilience through Health Monitoring and Reconfiguration [56.448036299746285]
We demonstrate an end-to-end framework to improve the resilience of man-made systems to unforeseen events.
The framework is based on a physics-based digital twin model and three modules tasked with real-time fault diagnosis, prognostics and reconfiguration.
arXiv Detail & Related papers (2022-08-30T20:16:17Z) - An Interactive Explanatory AI System for Industrial Quality Control [0.8889304968879161]
We aim to extend the defect detection task towards an interactive human-in-the-loop approach.
We propose an approach for an interactive support system for classifications in an industrial quality control setting.
arXiv Detail & Related papers (2022-03-17T09:04:46Z) - Technical Language Supervision for Intelligent Fault Diagnosis in
Process Industry [1.8574771508622119]
In the process industry, condition monitoring systems with automated fault diagnosis methods assisthuman experts and thereby improve maintenance efficiency, process sustainability, and workplace safety.
A major challenge in intelligent fault diagnosis (IFD) is to develop realistic datasets withaccurate labels needed to train and validate models.
domain-specific knowledge about fault characteristics and severitiesexists as technical language annotations in industrial datasets.
This creates a timely opportunity to developtechnical language supervision(TLS) solutions for IFD systems grounded in industrial data.
arXiv Detail & Related papers (2021-12-11T18:59:40Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.