論文の概要: Geography-Aware Self-Supervised Learning
- arxiv url: http://arxiv.org/abs/2011.09980v7
- Date: Tue, 8 Mar 2022 05:44:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-23 21:17:42.623789
- Title: Geography-Aware Self-Supervised Learning
- Title(参考訳): 地理を意識した自己監督型学習
- Authors: Kumar Ayush, Burak Uzkent, Chenlin Meng, Kumar Tanmay, Marshall Burke,
David Lobell, Stefano Ermon
- Abstract要約: 異なる特徴により、標準ベンチマークにおけるコントラスト学習と教師あり学習の間には、非自明なギャップが持続していることが示される。
本稿では,リモートセンシングデータの空間的整合性を利用した新しいトレーニング手法を提案する。
提案手法は,画像分類,オブジェクト検出,セマンティックセグメンテーションにおけるコントラスト学習と教師あり学習のギャップを埋めるものである。
- 参考スコア(独自算出の注目度): 79.4009241781968
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Contrastive learning methods have significantly narrowed the gap between
supervised and unsupervised learning on computer vision tasks. In this paper,
we explore their application to geo-located datasets, e.g. remote sensing,
where unlabeled data is often abundant but labeled data is scarce. We first
show that due to their different characteristics, a non-trivial gap persists
between contrastive and supervised learning on standard benchmarks. To close
the gap, we propose novel training methods that exploit the spatio-temporal
structure of remote sensing data. We leverage spatially aligned images over
time to construct temporal positive pairs in contrastive learning and
geo-location to design pre-text tasks. Our experiments show that our proposed
method closes the gap between contrastive and supervised learning on image
classification, object detection and semantic segmentation for remote sensing.
Moreover, we demonstrate that the proposed method can also be applied to
geo-tagged ImageNet images, improving downstream performance on various tasks.
Project Webpage can be found at this link geography-aware-ssl.github.io.
- Abstract(参考訳): コントラスト学習手法はコンピュータビジョンタスクにおける教師なし学習と教師なし学習のギャップを著しく狭めた。
本稿では,ラベル付きデータが多用されることが多いがラベル付きデータが乏しいリモートセンシングなどの位置情報データセットへの応用について検討する。
まず,それらの特徴から,標準ベンチマークにおけるコントラスト学習と教師付き学習との間には,非自明なギャップがあることを示す。
そこで本研究では,リモートセンシングデータの時空間構造を利用した新しい学習手法を提案する。
我々は時間とともに空間的に整列した画像を活用し、コントラスト学習における時間的正のペアを構築し、事前テキストタスクを設計する。
提案手法は,画像分類,オブジェクト検出,セマンティックセグメンテーションにおけるコントラスト学習と教師あり学習のギャップを埋めるものである。
さらに,提案手法をジオタグ付きイメージネットにも適用でき,様々なタスクにおけるダウンストリーム性能が向上することを示す。
Project Webpageは、このリンクで見ることができる。
関連論文リスト
- Terrain-Informed Self-Supervised Learning: Enhancing Building Footprint Extraction from LiDAR Data with Limited Annotations [1.3243401820948064]
フットプリントマップの構築は、広範な後処理なしで正確なフットプリント抽出を約束する。
ディープラーニング手法は、一般化とラベルの効率の面で課題に直面している。
リモートセンシングに適した地形認識型自己教師型学習を提案する。
論文 参考訳(メタデータ) (2023-11-02T12:34:23Z) - CSP: Self-Supervised Contrastive Spatial Pre-Training for
Geospatial-Visual Representations [90.50864830038202]
ジオタグ付き画像の自己教師型学習フレームワークであるContrastive Spatial Pre-Training(CSP)を提案する。
デュアルエンコーダを用いて画像とその対応する位置情報を別々に符号化し、コントラスト目的を用いて画像から効果的な位置表現を学習する。
CSPは、様々なラベル付きトレーニングデータサンプリング比と10~34%の相対的な改善で、モデル性能を大幅に向上させる。
論文 参考訳(メタデータ) (2023-05-01T23:11:18Z) - Scalable Self-Supervised Representation Learning from Spatiotemporal
Motion Trajectories for Multimodal Computer Vision [0.0]
本稿では,GPSトラジェクトリから地理的位置の表現を学習するための自己教師付きラベルなし手法を提案する。
到達可能性埋め込みは意味論的に意味のある表現であり,精度・リコール曲線(AUPRC)測定値の領域を用いて測定すると,性能が4~23%向上することを示す。
論文 参考訳(メタデータ) (2022-10-07T02:41:02Z) - Semantic Segmentation of Vegetation in Remote Sensing Imagery Using Deep
Learning [77.34726150561087]
本稿では,公開されているリモートセンシングデータからなるマルチモーダル・大規模時間データセットを作成するためのアプローチを提案する。
我々は、異なる種類の植生を分離できる畳み込みニューラルネットワーク(CNN)モデルを使用する。
論文 参考訳(メタデータ) (2022-09-28T18:51:59Z) - Reachability Embeddings: Scalable Self-Supervised Representation
Learning from Markovian Trajectories for Geospatial Computer Vision [0.0]
ラベルのないGPSトラジェクトリから地理的位置の表現を学習するための自己教師付き手法を提案する。
スケーラブルで分散されたアルゴリズムは、リーチビリティ・サマリーと呼ばれるイメージライクな表現を計算するために提示される。
到達可能性埋め込みは意味的に意味のある表現であり、結果として性能が4~23%向上することを示す。
論文 参考訳(メタデータ) (2021-10-24T20:10:22Z) - Geographical Knowledge-driven Representation Learning for Remote Sensing
Images [18.79154074365997]
リモートセンシング画像のための地理知識駆動表現学習法(GeoKR)を提案する。
各リモートセンシング画像に関連するグローバルな土地被覆製品と地理的位置を地理的知識とみなす。
ネットワーク事前トレーニングをサポートするために,大規模な事前トレーニングデータセットであるLevir-KRを提案する。
論文 参考訳(メタデータ) (2021-07-12T09:23:15Z) - Data Augmentation for Object Detection via Differentiable Neural
Rendering [71.00447761415388]
注釈付きデータが乏しい場合、堅牢なオブジェクト検出器を訓練することは困難です。
この問題に対処する既存のアプローチには、ラベル付きデータからラベル付きデータを補間する半教師付き学習が含まれる。
オブジェクト検出のためのオフラインデータ拡張手法を導入し、新しいビューでトレーニングデータを意味的に補間する。
論文 参考訳(メタデータ) (2021-03-04T06:31:06Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
新しいクラスのモデルをトレーニングするために、ラベル付きサンプルの限られた数だけを効果的に活用するための画像分類が提案されている。
本研究では,領域比較ネットワーク (RCN) と呼ばれる距離学習に基づく手法を提案する。
また,タスクのレベルからカテゴリへの解釈可能性の一般化も提案する。
論文 参考訳(メタデータ) (2020-09-08T07:29:05Z) - Learning Invariant Representations for Reinforcement Learning without
Reconstruction [98.33235415273562]
本研究では,表現学習が画像などのリッチな観察からの強化学習を,ドメイン知識や画素再構成に頼ることなく促進する方法について検討する。
シミュレーションメトリクスは、連続MDPの状態間の振る舞いの類似性を定量化する。
修正された視覚的 MuJoCo タスクを用いてタスク関連情報を無視する手法の有効性を実証する。
論文 参考訳(メタデータ) (2020-06-18T17:59:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。