Cascade Attentive Dropout for Weakly Supervised Object Detection
- URL: http://arxiv.org/abs/2011.10258v1
- Date: Fri, 20 Nov 2020 08:08:13 GMT
- Title: Cascade Attentive Dropout for Weakly Supervised Object Detection
- Authors: Wenlong Gao and Ying Chen and Yong Peng
- Abstract summary: Weakly supervised object detection (WSOD) aims to classify and locate objects with only image-level supervision.
Many WSOD approaches adopt multiple instance learning as the initial model, which is prone to converge to the most discriminative object regions.
We propose a novel cascade attentive dropout strategy to alleviate the part domination problem, together with an improved global context module.
- Score: 7.697578661762592
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Weakly supervised object detection (WSOD) aims to classify and locate objects
with only image-level supervision. Many WSOD approaches adopt multiple instance
learning as the initial model, which is prone to converge to the most
discriminative object regions while ignoring the whole object, and therefore
reduce the model detection performance. In this paper, a novel cascade
attentive dropout strategy is proposed to alleviate the part domination
problem, together with an improved global context module. We purposely discard
attentive elements in both channel and space dimensions, and capture the
inter-pixel and inter-channel dependencies to induce the model to better
understand the global context. Extensive experiments have been conducted on the
challenging PASCAL VOC 2007 benchmarks, which achieve 49.8% mAP and 66.0%
CorLoc, outperforming state-of-the-arts.
Related papers
- Sparse Semi-DETR: Sparse Learnable Queries for Semi-Supervised Object Detection [12.417754433715903]
We introduce Sparse Semi-DETR, a novel transformer-based, end-to-end semi-supervised object detection solution.
Sparse Semi-DETR incorporates a Query Refinement Module to enhance the quality of object queries, significantly improving detection capabilities for small and partially obscured objects.
On the MS-COCO and Pascal VOC object detection benchmarks, Sparse Semi-DETR achieves a significant improvement over current state-of-the-art methods.
arXiv Detail & Related papers (2024-04-02T10:22:23Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - USD: Unknown Sensitive Detector Empowered by Decoupled Objectness and
Segment Anything Model [14.080744645704751]
Open World Object Detection (OWOD) is a novel and challenging computer vision task.
We propose a simple yet effective learning strategy, namely Decoupled Objectness Learning (DOL), which divides the learning of these two boundaries into decoder layers.
We also introduce an Auxiliary Supervision Framework (ASF) that uses a pseudo-labeling and a soft-weighting strategies to alleviate the negative impact of noise.
arXiv Detail & Related papers (2023-06-04T06:42:09Z) - CLIP the Gap: A Single Domain Generalization Approach for Object
Detection [60.20931827772482]
Single Domain Generalization tackles the problem of training a model on a single source domain so that it generalizes to any unseen target domain.
We propose to leverage a pre-trained vision-language model to introduce semantic domain concepts via textual prompts.
We achieve this via a semantic augmentation strategy acting on the features extracted by the detector backbone, as well as a text-based classification loss.
arXiv Detail & Related papers (2023-01-13T12:01:18Z) - Discovery-and-Selection: Towards Optimal Multiple Instance Learning for
Weakly Supervised Object Detection [86.86602297364826]
We propose a discoveryand-selection approach fused with multiple instance learning (DS-MIL)
Our proposed DS-MIL approach can consistently improve the baselines, reporting state-of-the-art performance.
arXiv Detail & Related papers (2021-10-18T07:06:57Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.