Efficient preparation of 2D defect-free atom arrays with near-fewest
sorting-atom moves
- URL: http://arxiv.org/abs/2011.10390v2
- Date: Thu, 3 Dec 2020 08:25:47 GMT
- Title: Efficient preparation of 2D defect-free atom arrays with near-fewest
sorting-atom moves
- Authors: Cheng Sheng, Jiayi Hou, Xiaodong He, Peng Xu, Kunpeng Wang, Jun
Zhuang, Xiao Li, Min Liu, Jin Wang, and Mingsheng Zhan
- Abstract summary: We propose a new sorting algorithm (heuristic cluster algorithm, HCA) which provides near-fewest moves in our tailored atom assembler scheme.
Our method is essential to scale hundreds of assembled atoms for bottom-up quantum computation, quantum simulation and precision measurement.
- Score: 17.56031315827533
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sorting atoms stochastically loaded in optical tweezer arrays via an
auxiliary mobile tweezer is an efficient approach to preparing
intermediate-scale defect-free atom arrays in arbitrary geometries. However,
high filling fraction of atom-by-atom assemblers is impeded by redundant
sorting moves with imperfect atom transport, especially for scaling the system
size to larger atom numbers. Here, we propose a new sorting algorithm
(heuristic cluster algorithm, HCA) which provides near-fewest moves in our
tailored atom assembler scheme and experimentally demonstrate a $5\times6$
defect-free atom array with 98.4(7)$\%$ filling fraction for one rearrangement
cycle. The feature of HCA that the number of moves $N_{m}\approx N$ ($N$ is the
number of defect sites to be filled) makes the filling fraction uniform as the
size of atom assembler enlarged. Our method is essential to scale hundreds of
assembled atoms for bottom-up quantum computation, quantum simulation and
precision measurement.
Related papers
- Iterative assembly of $^{171}$Yb atom arrays with cavity-enhanced optical lattices [0.1441195472527485]
Assembling and maintaining large arrays of individually addressable atoms is a key requirement for continued scaling of neutral-atom-based quantum computers and simulators.
We demonstrate a new paradigm for assembly of atomic arrays, based on a synergistic combination of optical tweezers and cavity-enhanced optical lattices.
arXiv Detail & Related papers (2024-01-29T14:20:28Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - Efficient algorithms to solve atom reconfiguration problems. II. The
assignment-rerouting-ordering (aro) algorithm [51.02512563152503]
atom reconfiguration problems require solving an atom problem quickly and efficiently.
A typical approach to solve atom reconfiguration problems is to use an assignment algorithm to determine which atoms to move to which traps.
This approach does not optimize for the number of displaced atoms nor the number of times each atom is displaced.
We propose the assignment-rerouting-ordering (aro) algorithm to improve the performance of assignment-based algorithms in solving atom reconfiguration problems.
arXiv Detail & Related papers (2022-12-11T19:48:25Z) - Efficient algorithms to solve atom reconfiguration problems. I. The
redistribution-reconfiguration (red-rec) algorithm [51.02512563152503]
We numerically quantify the performance of the red-rec algorithm, both in the absence and in the presence of loss.
We show that the number of traps required to prepare a compact-centered configuration of atoms on a grid with a mean success probability of one half scales as the 3/2 power of the number of desired atoms.
The red-rec algorithm admits an efficient implementation that can readily be deployed on real-time control systems.
arXiv Detail & Related papers (2022-12-07T19:00:01Z) - Accelerating the assembly of defect-free atomic arrays with maximum
parallelisms [16.079283601909435]
Defect-free atomic arrays have been demonstrated as a scalable and fully-controllable platform for quantum simulations and quantum computations.
We design an integrated measurement and feedback system, based on field programmable gate array (FPGA), to quickly assemble two-dimensional defect-free atomic array.
We present the overall performance for different target geometries, and demonstrate a significant reduction in rearrangement time and the potential to scale up defect-free atomic array system to thousands of qubits.
arXiv Detail & Related papers (2022-10-19T08:11:01Z) - Parallel assembly of arbitrary defect-free atom arrays with a
multi-tweezer algorithm [0.0]
Large-scale defect-free atom arrays are an important precursor for quantum information processing and quantum simulation.
Here, we demonstrate a novel parallel rearrangement algorithm that uses multiple mobile tweezers to sort and compress atom arrays.
With a high degree of parallelism, our algorithm offers a reduced move complexity compared to both single-tweezer algorithms and existing multi-tweezer algorithms.
arXiv Detail & Related papers (2022-09-16T16:34:29Z) - Efficient two-dimensional defect-free dual-species atom arrays
rearrangement algorithm with near-fewest atom moves [12.346877792340315]
We propose an efficient connectivity optimization algorithm (HCOA) to rearrange theally loaded atoms into arbitrary configurations.
Our algorithm shows a high success rate (> 97%), low extra atom moves ratio, good scalability, and flexibility.
arXiv Detail & Related papers (2022-03-22T17:03:09Z) - Defect-free arbitrary-geometry assembly of mixed-species atom arrays [14.574774653919658]
We report the first demonstration of two-dimensional $6times4$ dual-species atom assembly with a filling fraction of 0.88 (0.89) for $85$Rb ($87$Rb) atoms.
Our fully tunable hybrid-atom system of scalable advantages is a good starting point for high-fidelity quantum logic.
arXiv Detail & Related papers (2021-06-11T03:03:59Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - A multiconfigurational study of the negatively charged nitrogen-vacancy
center in diamond [55.58269472099399]
Deep defects in wide band gap semiconductors have emerged as leading qubit candidates for realizing quantum sensing and information applications.
Here we show that unlike single-particle treatments, the multiconfigurational quantum chemistry methods, traditionally reserved for atoms/molecules, accurately describe the many-body characteristics of the electronic states of these defect centers.
arXiv Detail & Related papers (2020-08-24T01:49:54Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.