A Review and Comparative Study on Probabilistic Object Detection in
Autonomous Driving
- URL: http://arxiv.org/abs/2011.10671v2
- Date: Sun, 11 Jul 2021 07:04:10 GMT
- Title: A Review and Comparative Study on Probabilistic Object Detection in
Autonomous Driving
- Authors: Di Feng, Ali Harakeh, Steven Waslander, Klaus Dietmayer
- Abstract summary: Capturing uncertainty in object detection is indispensable for safe autonomous driving.
There is no summary on uncertainty estimation in deep object detection.
This paper provides a review and comparative study on existing probabilistic object detection methods.
- Score: 14.034548457000884
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Capturing uncertainty in object detection is indispensable for safe
autonomous driving. In recent years, deep learning has become the de-facto
approach for object detection, and many probabilistic object detectors have
been proposed. However, there is no summary on uncertainty estimation in deep
object detection, and existing methods are not only built with different
network architectures and uncertainty estimation methods, but also evaluated on
different datasets with a wide range of evaluation metrics. As a result, a
comparison among methods remains challenging, as does the selection of a model
that best suits a particular application. This paper aims to alleviate this
problem by providing a review and comparative study on existing probabilistic
object detection methods for autonomous driving applications. First, we provide
an overview of generic uncertainty estimation in deep learning, and then
systematically survey existing methods and evaluation metrics for probabilistic
object detection. Next, we present a strict comparative study for probabilistic
object detection based on an image detector and three public autonomous driving
datasets. Finally, we present a discussion of the remaining challenges and
future works. Code has been made available at
https://github.com/asharakeh/pod_compare.git
Related papers
- Bayesian Detector Combination for Object Detection with Crowdsourced Annotations [49.43709660948812]
Acquiring fine-grained object detection annotations in unconstrained images is time-consuming, expensive, and prone to noise.
We propose a novel Bayesian Detector Combination (BDC) framework to more effectively train object detectors with noisy crowdsourced annotations.
BDC is model-agnostic, requires no prior knowledge of the annotators' skill level, and seamlessly integrates with existing object detection models.
arXiv Detail & Related papers (2024-07-10T18:00:54Z) - Uncertainty-Aware AB3DMOT by Variational 3D Object Detection [74.8441634948334]
Uncertainty estimation is an effective tool to provide statistically accurate predictions.
In this paper, we propose a Variational Neural Network-based TANet 3D object detector to generate 3D object detections with uncertainty.
arXiv Detail & Related papers (2023-02-12T14:30:03Z) - Object Detection as Probabilistic Set Prediction [3.7599363231894176]
We present a proper scoring rule for evaluating and training probabilistic object detectors.
Our results indicate that the training of existing detectors is optimized toward non-probabilistic metrics.
arXiv Detail & Related papers (2022-03-15T15:13:52Z) - The Familiarity Hypothesis: Explaining the Behavior of Deep Open Set
Methods [86.39044549664189]
Anomaly detection algorithms for feature-vector data identify anomalies as outliers, but outlier detection has not worked well in deep learning.
This paper proposes the Familiarity Hypothesis that these methods succeed because they are detecting the absence of familiar learned features rather than the presence of novelty.
The paper concludes with a discussion of whether familiarity detection is an inevitable consequence of representation learning.
arXiv Detail & Related papers (2022-03-04T18:32:58Z) - Probabilistic Approach for Road-Users Detection [0.0]
One of the major challenges in state-of-the-art deep-learning based object detection are false positives which occur with overconfident scores.
This paper proposes an approach to alleviate the problem of overconfident predictions by introducing a novel probabilistic layer to deep object detection networks in testing.
It is demonstrated that the proposed technique reduces overconfidence in the false positives without degrading the performance on the true positives.
arXiv Detail & Related papers (2021-12-02T16:02:08Z) - Uncertainty Aware Proposal Segmentation for Unknown Object Detection [13.249453757295083]
This paper proposes to exploit additional predictions of semantic segmentation models and quantifying its confidences.
We use object proposals generated by Region Proposal Network (RPN) and adapt distance aware uncertainty estimation of semantic segmentation.
The augmented object proposals are then used to train a classifier for known vs. unknown objects categories.
arXiv Detail & Related papers (2021-11-25T01:53:05Z) - CertainNet: Sampling-free Uncertainty Estimation for Object Detection [65.28989536741658]
Estimating the uncertainty of a neural network plays a fundamental role in safety-critical settings.
In this work, we propose a novel sampling-free uncertainty estimation method for object detection.
We call it CertainNet, and it is the first to provide separate uncertainties for each output signal: objectness, class, location and size.
arXiv Detail & Related papers (2021-10-04T17:59:31Z) - Labels Are Not Perfect: Inferring Spatial Uncertainty in Object
Detection [26.008419879970365]
In this work, we infer the uncertainty in bounding box labels from LiDAR point clouds based on a generative model.
Comprehensive experiments show that the proposed model reflects complex environmental noises in LiDAR perception and the label quality.
We propose Jaccard IoU as a new evaluation metric that extends IoU by incorporating label uncertainty.
arXiv Detail & Related papers (2020-12-18T09:11:44Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
In this paper, we are concerned with the detection of a particular type of objects with extreme aspect ratios, namely textbfslender objects.
For a classical object detection method, a drastic drop of $18.9%$ mAP on COCO is observed, if solely evaluated on slender objects.
arXiv Detail & Related papers (2020-11-17T09:39:42Z) - Inferring Spatial Uncertainty in Object Detection [35.28872968233385]
We propose a generative model to estimate bounding box label uncertainties from LiDAR point clouds.
Comprehensive experiments show that the proposed model represents uncertainties commonly seen in driving scenarios.
We propose an extension of IoU, called the Jaccard IoU (JIoU), as a new evaluation metric that incorporates label uncertainty.
arXiv Detail & Related papers (2020-03-07T19:29:43Z) - CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus [62.86856923633923]
We present a robust estimator for fitting multiple parametric models of the same form to noisy measurements.
In contrast to previous works, which resorted to hand-crafted search strategies for multiple model detection, we learn the search strategy from data.
For self-supervised learning of the search, we evaluate the proposed algorithm on multi-homography estimation and demonstrate an accuracy that is superior to state-of-the-art methods.
arXiv Detail & Related papers (2020-01-08T17:37:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.