A Worrying Analysis of Probabilistic Time-series Models for Sales
Forecasting
- URL: http://arxiv.org/abs/2011.10715v1
- Date: Sat, 21 Nov 2020 03:31:23 GMT
- Title: A Worrying Analysis of Probabilistic Time-series Models for Sales
Forecasting
- Authors: Seungjae Jung, Kyung-Min Kim, Hanock Kwak and Young-Jin Park
- Abstract summary: Probabilistic time-series models become popular in the forecasting field as they help to make optimal decisions under uncertainty.
We analyze the performance of three prominent probabilistic time-series models for sales forecasting.
- Score: 10.690379201437015
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Probabilistic time-series models become popular in the forecasting field as
they help to make optimal decisions under uncertainty. Despite the growing
interest, a lack of thorough analysis hinders choosing what is worth applying
for the desired task. In this paper, we analyze the performance of three
prominent probabilistic time-series models for sales forecasting. To remove the
role of random chance in architecture's performance, we make two experimental
principles; 1) Large-scale dataset with various cross-validation sets. 2) A
standardized training and hyperparameter selection. The experimental results
show that a simple Multi-layer Perceptron and Linear Regression outperform the
probabilistic models on RMSE without any feature engineering. Overall, the
probabilistic models fail to achieve better performance on point estimation,
such as RMSE and MAPE, than comparably simple baselines. We analyze and discuss
the performances of probabilistic time-series models.
Related papers
- A Scalable and Transferable Time Series Prediction Framework for Demand
Forecasting [24.06534393565697]
Time series forecasting is one of the most essential and ubiquitous tasks in many business problems.
We propose Forecasting orchestra (Forchestra), a simple but powerful framework capable of accurately predicting future demand for a diverse range of items.
arXiv Detail & Related papers (2024-02-29T18:01:07Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
We study the effect of conflicting predictions over the set of near-optimal machine learning models.
We present theoretical results on the expected churn between models within the Rashomon set.
We show how our approach can be used to better anticipate, reduce, and avoid churn in consumer-facing applications.
arXiv Detail & Related papers (2024-02-12T16:15:25Z) - On Least Square Estimation in Softmax Gating Mixture of Experts [78.3687645289918]
We investigate the performance of the least squares estimators (LSE) under a deterministic MoE model.
We establish a condition called strong identifiability to characterize the convergence behavior of various types of expert functions.
Our findings have important practical implications for expert selection.
arXiv Detail & Related papers (2024-02-05T12:31:18Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2023-10-17T20:30:16Z) - pTSE: A Multi-model Ensemble Method for Probabilistic Time Series
Forecasting [10.441994923253596]
pTSE is a multi-model distribution ensemble method for probabilistic forecasting based on Hidden Markov Model (HMM)
We provide a complete theoretical analysis of pTSE to prove that the empirical distribution of time series subject to an HMM will converge to the stationary distribution almost surely.
Experiments on benchmarks show the superiority of pTSE overall member models and competitive ensemble methods.
arXiv Detail & Related papers (2023-05-16T07:00:57Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2022-06-16T06:13:53Z) - Model-based micro-data reinforcement learning: what are the crucial
model properties and which model to choose? [0.2836066255205732]
We contribute to micro-data model-based reinforcement learning (MBRL) by rigorously comparing popular generative models.
We find that on an environment that requires multimodal posterior predictives, mixture density nets outperform all other models by a large margin.
We also found that deterministic models are on par, in fact they consistently (although non-significantly) outperform their probabilistic counterparts.
arXiv Detail & Related papers (2021-07-24T11:38:25Z) - Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic
Regression [51.770998056563094]
Probabilistic Gradient Boosting Machines (PGBM) is a method to create probabilistic predictions with a single ensemble of decision trees.
We empirically demonstrate the advantages of PGBM compared to existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-03T08:32:13Z) - Model Selection for Time Series Forecasting: Empirical Analysis of
Different Estimators [1.6328866317851185]
We compare a set of estimation methods for model selection in time series forecasting tasks.
We empirically found that the accuracy of the estimators for selecting the best solution is low.
Some factors, such as the sample size, are important in the relative performance of the estimators.
arXiv Detail & Related papers (2021-04-01T16:08:25Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - A framework for probabilistic weather forecast post-processing across
models and lead times using machine learning [3.1542695050861544]
We show how to bridge the gap between sets of separate forecasts from NWP models and the 'ideal' forecast for decision support.
We use Quantile Regression Forests to learn the error profile of each numerical model, and use these to apply empirically-derived probability distributions to forecasts.
Second, we combine these probabilistic forecasts using quantile averaging. Third, we interpolate between the aggregate quantiles in order to generate a full predictive distribution.
arXiv Detail & Related papers (2020-05-06T16:46:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.