A Scalable and Transferable Time Series Prediction Framework for Demand
Forecasting
- URL: http://arxiv.org/abs/2402.19402v1
- Date: Thu, 29 Feb 2024 18:01:07 GMT
- Title: A Scalable and Transferable Time Series Prediction Framework for Demand
Forecasting
- Authors: Young-Jin Park, Donghyun Kim, Fr\'ed\'eric Odermatt, Juho Lee,
Kyung-Min Kim
- Abstract summary: Time series forecasting is one of the most essential and ubiquitous tasks in many business problems.
We propose Forecasting orchestra (Forchestra), a simple but powerful framework capable of accurately predicting future demand for a diverse range of items.
- Score: 24.06534393565697
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time series forecasting is one of the most essential and ubiquitous tasks in
many business problems, including demand forecasting and logistics
optimization. Traditional time series forecasting methods, however, have
resulted in small models with limited expressive power because they have
difficulty in scaling their model size up while maintaining high accuracy. In
this paper, we propose Forecasting orchestra (Forchestra), a simple but
powerful framework capable of accurately predicting future demand for a diverse
range of items. We empirically demonstrate that the model size is scalable to
up to 0.8 billion parameters. The proposed method not only outperforms existing
forecasting models with a significant margin, but it could generalize well to
unseen data points when evaluated in a zero-shot fashion on downstream
datasets. Last but not least, we present extensive qualitative and quantitative
studies to analyze how the proposed model outperforms baseline models and
differs from conventional approaches. The original paper was presented as a
full paper at ICDM 2022 and is available at:
https://ieeexplore.ieee.org/document/10027662.
Related papers
- GIFT-Eval: A Benchmark For General Time Series Forecasting Model Evaluation [90.53485251837235]
Time series foundation models excel in zero-shot forecasting, handling diverse tasks without explicit training.
GIFT-Eval is a pioneering benchmark aimed at promoting evaluation across diverse datasets.
GIFT-Eval encompasses 23 datasets over 144,000 time series and 177 million data points.
arXiv Detail & Related papers (2024-10-14T11:29:38Z) - Time-MoE: Billion-Scale Time Series Foundation Models with Mixture of Experts [25.503695417712997]
Time-MoE is a scalable and unified architecture designed to pre-train larger, more capable forecasting foundation models.
Time-MoE enhances computational efficiency by activating only a subset of networks for each prediction.
For the first time, we scaled a time series foundation model up to 2.4 billion parameters, achieving significantly improved forecasting precision.
arXiv Detail & Related papers (2024-09-24T12:42:18Z) - AALF: Almost Always Linear Forecasting [3.336367986372977]
We argue that simple models are good enough most of the time, and forecasting performance can be improved by choosing a Deep Learning method only for certain predictions.
An empirical study on various real-world datasets shows that our selection methodology outperforms state-of-the-art online model selections methods in most cases.
arXiv Detail & Related papers (2024-09-16T10:13:09Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
We formulate the demand prediction as a meta-learning problem and develop the Feature-based First-Order Model-Agnostic Meta-Learning (F-FOMAML) algorithm.
By considering domain similarities through task-specific metadata, our model improved generalization, where the excess risk decreases as the number of training tasks increases.
Compared to existing state-of-the-art models, our method demonstrates a notable improvement in demand prediction accuracy, reducing the Mean Absolute Error by 26.24% on an internal vending machine dataset and by 1.04% on the publicly accessible JD.com dataset.
arXiv Detail & Related papers (2024-06-23T21:28:50Z) - Few-Shot Load Forecasting Under Data Scarcity in Smart Grids: A Meta-Learning Approach [0.18641315013048293]
This paper proposes adapting an established model-agnostic meta-learning algorithm for short-term load forecasting.
The proposed method can rapidly adapt and generalize within any unknown load time series of arbitrary length.
The proposed model is evaluated using a dataset of historical load consumption data from real-world consumers.
arXiv Detail & Related papers (2024-06-09T18:59:08Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
We study the effect of conflicting predictions over the set of near-optimal machine learning models.
We present theoretical results on the expected churn between models within the Rashomon set.
We show how our approach can be used to better anticipate, reduce, and avoid churn in consumer-facing applications.
arXiv Detail & Related papers (2024-02-12T16:15:25Z) - Lag-Llama: Towards Foundation Models for Probabilistic Time Series
Forecasting [54.04430089029033]
We present Lag-Llama, a general-purpose foundation model for time series forecasting based on a decoder-only transformer architecture.
Lag-Llama is pretrained on a large corpus of diverse time series data from several domains, and demonstrates strong zero-shot generalization capabilities.
When fine-tuned on relatively small fractions of such previously unseen datasets, Lag-Llama achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-10-12T12:29:32Z) - Low-Rank Temporal Attention-Augmented Bilinear Network for financial
time-series forecasting [93.73198973454944]
Deep learning models have led to significant performance improvements in many problems coming from different domains, including prediction problems of financial time-series data.
The Temporal Attention-Augmented Bilinear network was recently proposed as an efficient and high-performing model for Limit Order Book time-series forecasting.
In this paper, we propose a low-rank tensor approximation of the model to further reduce the number of trainable parameters and increase its speed.
arXiv Detail & Related papers (2021-07-05T10:15:23Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Simultaneously Reconciled Quantile Forecasting of Hierarchically Related
Time Series [11.004159006784977]
We propose a flexible nonlinear model that optimize quantile regression loss coupled with suitable regularization terms to maintain consistency of forecasts across hierarchies.
The theoretical framework introduced herein can be applied to any forecasting model with an underlying differentiable loss function.
arXiv Detail & Related papers (2021-02-25T00:59:01Z) - A Worrying Analysis of Probabilistic Time-series Models for Sales
Forecasting [10.690379201437015]
Probabilistic time-series models become popular in the forecasting field as they help to make optimal decisions under uncertainty.
We analyze the performance of three prominent probabilistic time-series models for sales forecasting.
arXiv Detail & Related papers (2020-11-21T03:31:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.