GNNLens: A Visual Analytics Approach for Prediction Error Diagnosis of
Graph Neural Networks
- URL: http://arxiv.org/abs/2011.11048v6
- Date: Thu, 7 Apr 2022 09:46:50 GMT
- Title: GNNLens: A Visual Analytics Approach for Prediction Error Diagnosis of
Graph Neural Networks
- Authors: Zhihua Jin, Yong Wang, Qianwen Wang, Yao Ming, Tengfei Ma, Huamin Qu
- Abstract summary: Graph Neural Networks (GNNs) aim to extend deep learning techniques to graph data.
GNNs behave like a black box with their details hidden from model developers and users.
It is therefore difficult to diagnose possible errors of GNNs.
This paper fills the research gap with an interactive visual analysis tool, GNNLens, to assist model developers and users in understanding and analyzing GNNs.
- Score: 42.222552078920216
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) aim to extend deep learning techniques to graph
data and have achieved significant progress in graph analysis tasks (e.g., node
classification) in recent years. However, similar to other deep neural networks
like Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs),
GNNs behave like a black box with their details hidden from model developers
and users. It is therefore difficult to diagnose possible errors of GNNs.
Despite many visual analytics studies being done on CNNs and RNNs, little
research has addressed the challenges for GNNs. This paper fills the research
gap with an interactive visual analysis tool, GNNLens, to assist model
developers and users in understanding and analyzing GNNs. Specifically,
Parallel Sets View and Projection View enable users to quickly identify and
validate error patterns in the set of wrong predictions; Graph View and Feature
Matrix View offer a detailed analysis of individual nodes to assist users in
forming hypotheses about the error patterns. Since GNNs jointly model the graph
structure and the node features, we reveal the relative influences of the two
types of information by comparing the predictions of three models: GNN,
Multi-Layer Perceptron (MLP), and GNN Without Using Features (GNNWUF). Two case
studies and interviews with domain experts demonstrate the effectiveness of
GNNLens in facilitating the understanding of GNN models and their errors.
Related papers
- Information Flow in Graph Neural Networks: A Clinical Triage Use Case [49.86931948849343]
Graph Neural Networks (GNNs) have gained popularity in healthcare and other domains due to their ability to process multi-modal and multi-relational graphs.
We investigate how the flow of embedding information within GNNs affects the prediction of links in Knowledge Graphs (KGs)
Our results demonstrate that incorporating domain knowledge into the GNN connectivity leads to better performance than using the same connectivity as the KG or allowing unconstrained embedding propagation.
arXiv Detail & Related papers (2023-09-12T09:18:12Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - GNNInterpreter: A Probabilistic Generative Model-Level Explanation for
Graph Neural Networks [25.94529851210956]
We propose a model-agnostic model-level explanation method for different Graph Neural Networks (GNNs) that follow the message passing scheme, GNNInterpreter.
GNNInterpreter learns a probabilistic generative graph distribution that produces the most discriminative graph pattern the GNN tries to detect.
Compared to existing works, GNNInterpreter is more flexible and computationally efficient in generating explanation graphs with different types of node and edge features.
arXiv Detail & Related papers (2022-09-15T07:45:35Z) - EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural
Networks [51.42338058718487]
Graph Neural Networks (GNNs) have received extensive research attention for their promising performance in graph machine learning.
Existing approaches, such as GCN and GPRGNN, are not robust in the face of homophily changes on test graphs.
We propose EvenNet, a spectral GNN corresponding to an even-polynomial graph filter.
arXiv Detail & Related papers (2022-05-27T10:48:14Z) - Toward the Analysis of Graph Neural Networks [1.0412114420493723]
Graph Neural Networks (GNNs) have emerged as a robust framework for graph-structured data analysis.
This paper proposes an approach to analyze GNNs by converting them into Feed Forward Neural Networks (FFNNs) and reusing existing FFNNs analyses.
arXiv Detail & Related papers (2022-01-01T04:59:49Z) - Edge-Level Explanations for Graph Neural Networks by Extending
Explainability Methods for Convolutional Neural Networks [33.20913249848369]
Graph Neural Networks (GNNs) are deep learning models that take graph data as inputs, and they are applied to various tasks such as traffic prediction and molecular property prediction.
We extend explainability methods for CNNs, such as Local Interpretable Model-Agnostic Explanations (LIME), Gradient-Based Saliency Maps, and Gradient-Weighted Class Activation Mapping (Grad-CAM) to GNNs.
The experimental results indicate that the LIME-based approach is the most efficient explainability method for multiple tasks in the real-world situation, outperforming even the state-of-the
arXiv Detail & Related papers (2021-11-01T06:27:29Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - Graph Neural Networks for Motion Planning [108.51253840181677]
We present two techniques, GNNs over dense fixed graphs for low-dimensional problems and sampling-based GNNs for high-dimensional problems.
We examine the ability of a GNN to tackle planning problems such as identifying critical nodes or learning the sampling distribution in Rapidly-exploring Random Trees (RRT)
Experiments with critical sampling, a pendulum and a six DoF robot arm show GNNs improve on traditional analytic methods as well as learning approaches using fully-connected or convolutional neural networks.
arXiv Detail & Related papers (2020-06-11T08:19:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.