GNNInterpreter: A Probabilistic Generative Model-Level Explanation for
Graph Neural Networks
- URL: http://arxiv.org/abs/2209.07924v4
- Date: Thu, 22 Feb 2024 21:26:25 GMT
- Title: GNNInterpreter: A Probabilistic Generative Model-Level Explanation for
Graph Neural Networks
- Authors: Xiaoqi Wang, Han-Wei Shen
- Abstract summary: We propose a model-agnostic model-level explanation method for different Graph Neural Networks (GNNs) that follow the message passing scheme, GNNInterpreter.
GNNInterpreter learns a probabilistic generative graph distribution that produces the most discriminative graph pattern the GNN tries to detect.
Compared to existing works, GNNInterpreter is more flexible and computationally efficient in generating explanation graphs with different types of node and edge features.
- Score: 25.94529851210956
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, Graph Neural Networks (GNNs) have significantly advanced the
performance of machine learning tasks on graphs. However, this technological
breakthrough makes people wonder: how does a GNN make such decisions, and can
we trust its prediction with high confidence? When it comes to some critical
fields, such as biomedicine, where making wrong decisions can have severe
consequences, it is crucial to interpret the inner working mechanisms of GNNs
before applying them. In this paper, we propose a model-agnostic model-level
explanation method for different GNNs that follow the message passing scheme,
GNNInterpreter, to explain the high-level decision-making process of the GNN
model. More specifically, GNNInterpreter learns a probabilistic generative
graph distribution that produces the most discriminative graph pattern the GNN
tries to detect when making a certain prediction by optimizing a novel
objective function specifically designed for the model-level explanation for
GNNs. Compared to existing works, GNNInterpreter is more flexible and
computationally efficient in generating explanation graphs with different types
of node and edge features, without introducing another blackbox or requiring
manually specified domain-specific rules. In addition, the experimental studies
conducted on four different datasets demonstrate that the explanation graphs
generated by GNNInterpreter match the desired graph pattern if the model is
ideal; otherwise, potential model pitfalls can be revealed by the explanation.
The official implementation can be found at
https://github.com/yolandalalala/GNNInterpreter.
Related papers
- GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels [81.93520935479984]
We study a new problem, GNN model evaluation, that aims to assess the performance of a specific GNN model trained on labeled and observed graphs.
We propose a two-stage GNN model evaluation framework, including (1) DiscGraph set construction and (2) GNNEvaluator training and inference.
Under the effective training supervision from the DiscGraph set, GNNEvaluator learns to precisely estimate node classification accuracy of the to-be-evaluated GNN model.
arXiv Detail & Related papers (2023-10-23T05:51:59Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Distribution Preserving Graph Representation Learning [11.340722297341788]
Graph neural network (GNN) is effective to model graphs for distributed representations of nodes and an entire graph.
We propose Distribution Preserving GNN (DP-GNN) - a GNN framework that can improve the generalizability of expressive GNN models.
We evaluate the proposed DP-GNN framework on multiple benchmark datasets for graph classification tasks.
arXiv Detail & Related papers (2022-02-27T19:16:26Z) - ProtGNN: Towards Self-Explaining Graph Neural Networks [12.789013658551454]
We propose Prototype Graph Neural Network (ProtGNN), which combines prototype learning with GNNs.
ProtGNN and ProtGNN+ can provide inherent interpretability while achieving accuracy on par with the non-interpretable counterparts.
arXiv Detail & Related papers (2021-12-02T01:16:29Z) - Towards Self-Explainable Graph Neural Network [24.18369781999988]
Graph Neural Networks (GNNs) generalize the deep neural networks to graph-structured data.
GNNs lack explainability, which limits their adoption in scenarios that demand the transparency of models.
We propose a new framework which can find $K$-nearest labeled nodes for each unlabeled node to give explainable node classification.
arXiv Detail & Related papers (2021-08-26T22:45:11Z) - Graph Neural Networks with Local Graph Parameters [1.8600631687568656]
Local graph parameters can be added to any Graph Neural Networks (GNNs) architecture.
Our results connect GNNs with deep results in finite model theory and finite variable logics.
arXiv Detail & Related papers (2021-06-12T07:43:51Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - The Surprising Power of Graph Neural Networks with Random Node
Initialization [54.4101931234922]
Graph neural networks (GNNs) are effective models for representation learning on relational data.
Standard GNNs are limited in their expressive power, as they cannot distinguish beyond the capability of the Weisfeiler-Leman graph isomorphism.
In this work, we analyze the expressive power of GNNs with random node (RNI)
We prove that these models are universal, a first such result for GNNs not relying on computationally demanding higher-order properties.
arXiv Detail & Related papers (2020-10-02T19:53:05Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
Graph Neural Networks (GNNs) have achieved great success in graph representation learning.
GNNs generate identical representations for graph substructures that may in fact be very different.
More powerful GNNs, proposed recently by mimicking higher-order tests, are inefficient as they cannot sparsity of underlying graph structure.
We propose Distance Depiction (DE) as a new class of graph representation learning.
arXiv Detail & Related papers (2020-08-31T23:15:40Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
Graphs neural networks (GNNs) learn node features by aggregating and combining neighbor information.
GNNs are mostly treated as black-boxes and lack human intelligible explanations.
We propose a novel approach, known as XGNN, to interpret GNNs at the model-level.
arXiv Detail & Related papers (2020-06-03T23:52:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.