Dense open-set recognition with synthetic outliers generated by Real NVP
- URL: http://arxiv.org/abs/2011.11094v1
- Date: Sun, 22 Nov 2020 19:40:26 GMT
- Title: Dense open-set recognition with synthetic outliers generated by Real NVP
- Authors: Matej Grci\'c, Petra Bevandi\'c and Sini\v{s}a \v{S}egvi\'c
- Abstract summary: We consider an outlier detection approach based on discriminative training with jointly learned synthetic outliers.
We show that this approach can be adapted for simultaneous semantic segmentation and dense outlier detection.
Our models perform competitively with respect to the state of the art despite producing predictions with only one forward pass.
- Score: 1.278093617645299
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Today's deep models are often unable to detect inputs which do not belong to
the training distribution. This gives rise to confident incorrect predictions
which could lead to devastating consequences in many important application
fields such as healthcare and autonomous driving. Interestingly, both
discriminative and generative models appear to be equally affected.
Consequently, this vulnerability represents an important research challenge. We
consider an outlier detection approach based on discriminative training with
jointly learned synthetic outliers. We obtain the synthetic outliers by
sampling an RNVP model which is jointly trained to generate datapoints at the
border of the training distribution. We show that this approach can be adapted
for simultaneous semantic segmentation and dense outlier detection. We present
image classification experiments on CIFAR-10, as well as semantic segmentation
experiments on three existing datasets (StreetHazards, WD-Pascal, Fishyscapes
Lost & Found), and one contributed dataset. Our models perform competitively
with respect to the state of the art despite producing predictions with only
one forward pass.
Related papers
- FullCert: Deterministic End-to-End Certification for Training and Inference of Neural Networks [62.897993591443594]
FullCert is the first end-to-end certifier with sound, deterministic bounds.
We experimentally demonstrate FullCert's feasibility on two datasets.
arXiv Detail & Related papers (2024-06-17T13:23:52Z) - Robust Outlier Rejection for 3D Registration with Variational Bayes [70.98659381852787]
We develop a novel variational non-local network-based outlier rejection framework for robust alignment.
We propose a voting-based inlier searching strategy to cluster the high-quality hypothetical inliers for transformation estimation.
arXiv Detail & Related papers (2023-04-04T03:48:56Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - Explicit Tradeoffs between Adversarial and Natural Distributional
Robustness [48.44639585732391]
In practice, models need to enjoy both types of robustness to ensure reliability.
In this work, we show that in fact, explicit tradeoffs exist between adversarial and natural distributional robustness.
arXiv Detail & Related papers (2022-09-15T19:58:01Z) - Uncertainty in Contrastive Learning: On the Predictability of Downstream
Performance [7.411571833582691]
We study whether the uncertainty of such a representation can be quantified for a single datapoint in a meaningful way.
We show that this goal can be achieved by directly estimating the distribution of the training data in the embedding space.
arXiv Detail & Related papers (2022-07-19T15:44:59Z) - Autoencoder Attractors for Uncertainty Estimation [13.618797548020462]
We propose a novel approach for uncertainty estimation based on autoencoder models.
We evaluate our approach on several dataset combinations as well as on an industrial application for occupant classification in the vehicle interior.
arXiv Detail & Related papers (2022-04-01T12:10:06Z) - VOS: Learning What You Don't Know by Virtual Outlier Synthesis [23.67449949146439]
Out-of-distribution (OOD) detection has received much attention lately due to its importance in the safe deployment of neural networks.
Previous approaches rely on real outlier datasets for model regularization.
We present VOS, a novel framework for OOD detection by adaptively synthesizing virtual outliers.
arXiv Detail & Related papers (2022-02-02T18:43:01Z) - Dense Out-of-Distribution Detection by Robust Learning on Synthetic
Negative Data [1.7474352892977458]
We show how to detect out-of-distribution anomalies in road-driving scenes and remote sensing imagery.
We leverage a jointly trained normalizing flow due to coverage-oriented learning objective and the capability to generate samples at different resolutions.
The resulting models set the new state of the art on benchmarks for out-of-distribution detection in road-driving scenes and remote sensing imagery.
arXiv Detail & Related papers (2021-12-23T20:35:10Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
The distributionally robust optimization framework is considered for training a parametric model.
The objective is to endow the trained model with robustness against adversarially manipulated input data.
Proposed algorithms offer robustness with little overhead.
arXiv Detail & Related papers (2020-07-07T18:25:25Z) - When Relation Networks meet GANs: Relation GANs with Triplet Loss [110.7572918636599]
Training stability is still a lingering concern of generative adversarial networks (GANs)
In this paper, we explore a relation network architecture for the discriminator and design a triplet loss which performs better generalization and stability.
Experiments on benchmark datasets show that the proposed relation discriminator and new loss can provide significant improvement on variable vision tasks.
arXiv Detail & Related papers (2020-02-24T11:35:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.