The Emerging Trends of Multi-Label Learning
- URL: http://arxiv.org/abs/2011.11197v3
- Date: Wed, 17 Nov 2021 06:46:43 GMT
- Title: The Emerging Trends of Multi-Label Learning
- Authors: Weiwei Liu, Haobo Wang, Xiaobo Shen, Ivor W. Tsang
- Abstract summary: Exabytes of data are generated daily by humans, leading to the growing need for new efforts in dealing with the grand challenges for multi-label learning brought by big data.
There is a lack of systemic studies that focus explicitly on analyzing the emerging trends and new challenges of multi-label learning in the era of big data.
It is imperative to call for a comprehensive survey to fulfill this mission and delineate future research directions and new applications.
- Score: 45.63795570392158
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Exabytes of data are generated daily by humans, leading to the growing need
for new efforts in dealing with the grand challenges for multi-label learning
brought by big data. For example, extreme multi-label classification is an
active and rapidly growing research area that deals with classification tasks
with an extremely large number of classes or labels; utilizing massive data
with limited supervision to build a multi-label classification model becomes
valuable for practical applications, etc. Besides these, there are tremendous
efforts on how to harvest the strong learning capability of deep learning to
better capture the label dependencies in multi-label learning, which is the key
for deep learning to address real-world classification tasks. However, it is
noted that there has been a lack of systemic studies that focus explicitly on
analyzing the emerging trends and new challenges of multi-label learning in the
era of big data. It is imperative to call for a comprehensive survey to fulfill
this mission and delineate future research directions and new applications.
Related papers
- Granularity Matters in Long-Tail Learning [62.30734737735273]
We offer a novel perspective on long-tail learning, inspired by an observation: datasets with finer granularity tend to be less affected by data imbalance.
We introduce open-set auxiliary classes that are visually similar to existing ones, aiming to enhance representation learning for both head and tail classes.
To prevent the overwhelming presence of auxiliary classes from disrupting training, we introduce a neighbor-silencing loss.
arXiv Detail & Related papers (2024-10-21T13:06:21Z) - Deep Learning for Multi-Label Learning: A Comprehensive Survey [6.571492336879553]
Multi-label learning is a rapidly growing research area that aims to predict multiple labels from a single input data point.
Inherent difficulties in MLC include dealing with high-dimensional data, addressing label correlations, and handling partial labels.
Recent years have witnessed a notable increase in adopting deep learning (DL) techniques to address these challenges more effectively in MLC.
arXiv Detail & Related papers (2024-01-29T20:37:03Z) - A Survey of Label-Efficient Deep Learning for 3D Point Clouds [109.07889215814589]
This paper presents the first comprehensive survey of label-efficient learning of point clouds.
We propose a taxonomy that organizes label-efficient learning methods based on the data prerequisites provided by different types of labels.
For each approach, we outline the problem setup and provide an extensive literature review that showcases relevant progress and challenges.
arXiv Detail & Related papers (2023-05-31T12:54:51Z) - Label-Efficient Deep Learning in Medical Image Analysis: Challenges and
Future Directions [10.502964056448283]
Training models in medical imaging analysis typically require expensive and time-consuming collection of labeled data.
We extensively investigated over 300 recent papers to provide a comprehensive overview of progress on label-efficient learning strategies in MIA.
Specifically, we provide an in-depth investigation, covering not only canonical semi-supervised, self-supervised, and multi-instance learning schemes, but also recently emerged active and annotation-efficient learning strategies.
arXiv Detail & Related papers (2023-03-22T11:51:49Z) - Active learning for data streams: a survey [0.48951183832371004]
Online active learning is a paradigm in machine learning that aims to select the most informative data points to label from a data stream.
Annotating each observation can be time-consuming and costly, making it difficult to obtain large amounts of labeled data.
This work aims to provide an overview of the most recently proposed approaches for selecting the most informative observations from data streams in real time.
arXiv Detail & Related papers (2023-02-17T14:24:13Z) - A Multi-label Continual Learning Framework to Scale Deep Learning
Approaches for Packaging Equipment Monitoring [57.5099555438223]
We study multi-label classification in the continual scenario for the first time.
We propose an efficient approach that has a logarithmic complexity with regard to the number of tasks.
We validate our approach on a real-world multi-label Forecasting problem from the packaging industry.
arXiv Detail & Related papers (2022-08-08T15:58:39Z) - Understanding the World Through Action [91.3755431537592]
I will argue that a general, principled, and powerful framework for utilizing unlabeled data can be derived from reinforcement learning.
I will discuss how such a procedure is more closely aligned with potential downstream tasks.
arXiv Detail & Related papers (2021-10-24T22:33:52Z) - Deep Long-Tailed Learning: A Survey [163.16874896812885]
Deep long-tailed learning aims to train well-performing deep models from a large number of images that follow a long-tailed class distribution.
Long-tailed class imbalance is a common problem in practical visual recognition tasks.
This paper provides a comprehensive survey on recent advances in deep long-tailed learning.
arXiv Detail & Related papers (2021-10-09T15:25:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.