Granularity Matters in Long-Tail Learning
- URL: http://arxiv.org/abs/2410.15980v2
- Date: Tue, 22 Oct 2024 06:35:13 GMT
- Title: Granularity Matters in Long-Tail Learning
- Authors: Shizhen Zhao, Xin Wen, Jiahui Liu, Chuofan Ma, Chunfeng Yuan, Xiaojuan Qi,
- Abstract summary: We offer a novel perspective on long-tail learning, inspired by an observation: datasets with finer granularity tend to be less affected by data imbalance.
We introduce open-set auxiliary classes that are visually similar to existing ones, aiming to enhance representation learning for both head and tail classes.
To prevent the overwhelming presence of auxiliary classes from disrupting training, we introduce a neighbor-silencing loss.
- Score: 62.30734737735273
- License:
- Abstract: Balancing training on long-tail data distributions remains a long-standing challenge in deep learning. While methods such as re-weighting and re-sampling help alleviate the imbalance issue, limited sample diversity continues to hinder models from learning robust and generalizable feature representations, particularly for tail classes. In contrast to existing methods, we offer a novel perspective on long-tail learning, inspired by an observation: datasets with finer granularity tend to be less affected by data imbalance. In this paper, we investigate this phenomenon through both quantitative and qualitative studies, showing that increased granularity enhances the generalization of learned features in tail categories. Motivated by these findings, we propose a method to increase dataset granularity through category extrapolation. Specifically, we introduce open-set auxiliary classes that are visually similar to existing ones, aiming to enhance representation learning for both head and tail classes. This forms the core contribution and insight of our approach. To automate the curation of auxiliary data, we leverage large language models (LLMs) as knowledge bases to search for auxiliary categories and retrieve relevant images through web crawling. To prevent the overwhelming presence of auxiliary classes from disrupting training, we introduce a neighbor-silencing loss that encourages the model to focus on class discrimination within the target dataset. During inference, the classifier weights for auxiliary categories are masked out, leaving only the target class weights for use. Extensive experiments and ablation studies on three standard long-tail benchmarks demonstrate the effectiveness of our approach, notably outperforming strong baseline methods that use the same amount of data. The code will be made publicly available.
Related papers
- LCReg: Long-Tailed Image Classification with Latent Categories based
Recognition [81.5551335554507]
We propose the Latent Categories based long-tail Recognition (LCReg) method.
Our hypothesis is that common latent features shared by head and tail classes can be used to improve feature representation.
Specifically, we learn a set of class-agnostic latent features shared by both head and tail classes, and then use semantic data augmentation on the latent features to implicitly increase the diversity of the training sample.
arXiv Detail & Related papers (2023-09-13T02:03:17Z) - Towards Long-Tailed Recognition for Graph Classification via
Collaborative Experts [10.99232053983369]
We propose a novel long-tailed graph-level classification framework via Collaborative Multi-expert Learning (CoMe)
To equilibrate the contributions of head and tail classes, we first develop balanced contrastive learning from the view of representation learning.
We execute gated fusion and disentangled knowledge distillation among the multiple experts to promote the collaboration in a multi-expert framework.
arXiv Detail & Related papers (2023-08-31T10:12:32Z) - Propheter: Prophetic Teacher Guided Long-Tailed Distribution Learning [44.947984354108094]
We propose an innovative long-tailed learning paradigm that breaks the bottleneck by guiding the learning of deep networks with external prior knowledge.
The proposed prophetic paradigm acts as a promising solution to the challenge of limited class knowledge in long-tailed datasets.
arXiv Detail & Related papers (2023-04-09T02:02:19Z) - Leveraging Angular Information Between Feature and Classifier for
Long-tailed Learning: A Prediction Reformulation Approach [90.77858044524544]
We reformulate the recognition probabilities through included angles without re-balancing the classifier weights.
Inspired by the performance improvement of the predictive form reformulation, we explore the different properties of this angular prediction.
Our method is able to obtain the best performance among peer methods without pretraining on CIFAR10/100-LT and ImageNet-LT.
arXiv Detail & Related papers (2022-12-03T07:52:48Z) - Constructing Balance from Imbalance for Long-tailed Image Recognition [50.6210415377178]
The imbalance between majority (head) classes and minority (tail) classes severely skews the data-driven deep neural networks.
Previous methods tackle with data imbalance from the viewpoints of data distribution, feature space, and model design.
We propose a concise paradigm by progressively adjusting label space and dividing the head classes and tail classes.
Our proposed model also provides a feature evaluation method and paves the way for long-tailed feature learning.
arXiv Detail & Related papers (2022-08-04T10:22:24Z) - Learning Debiased and Disentangled Representations for Semantic
Segmentation [52.35766945827972]
We propose a model-agnostic and training scheme for semantic segmentation.
By randomly eliminating certain class information in each training iteration, we effectively reduce feature dependencies among classes.
Models trained with our approach demonstrate strong results on multiple semantic segmentation benchmarks.
arXiv Detail & Related papers (2021-10-31T16:15:09Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
We propose a new learning paradigm with graph representation and learning.
Our framework contains two modules: 1) a backbone network (e.g., feedforward neural nets) as a lower model takes features as input and outputs predicted labels; 2) a graph neural network as an upper model learns to extrapolate embeddings for new features via message passing over a feature-data graph built from observed data.
arXiv Detail & Related papers (2021-10-09T09:02:45Z) - The Devil is the Classifier: Investigating Long Tail Relation
Classification with Decoupling Analysis [36.298869931803836]
Long-tailed relation classification is a challenging problem as the head classes may dominate the training phase.
We propose a robust classifier with attentive relation routing, which assigns soft weights by automatically aggregating the relations.
arXiv Detail & Related papers (2020-09-15T12:47:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.