論文の概要: Federated learning with class imbalance reduction
- arxiv url: http://arxiv.org/abs/2011.11266v1
- Date: Mon, 23 Nov 2020 08:13:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-22 01:45:31.703312
- Title: Federated learning with class imbalance reduction
- Title(参考訳): クラス不均衡によるフェデレーション学習
- Authors: Miao Yang, Akitanoshou Wong, Hongbin Zhu, Haifeng Wang, Hua Qian
- Abstract要約: フェデレートラーニング(Federated Learning, FL)は、多数のエッジコンピューティングデバイスが協調してグローバルラーニングモデルをトレーニングすることを可能にする技術である。
プライバシー上の懸念から、デバイス上の生データは集中型サーバでは利用できない。
本稿では,生データを意識せずにクラス分布を明らかにするための推定手法を提案する。
- 参考スコア(独自算出の注目度): 24.044750119251308
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) is a promising technique that enables a large amount
of edge computing devices to collaboratively train a global learning model. Due
to privacy concerns, the raw data on devices could not be available for
centralized server. Constrained by the spectrum limitation and computation
capacity, only a subset of devices can be engaged to train and transmit the
trained model to centralized server for aggregation. Since the local data
distribution varies among all devices, class imbalance problem arises along
with the unfavorable client selection, resulting in a slow converge rate of the
global model. In this paper, an estimation scheme is designed to reveal the
class distribution without the awareness of raw data. Based on the scheme, a
device selection algorithm towards minimal class imbalance is proposed, thus
can improve the convergence performance of the global model. Simulation results
demonstrate the effectiveness of the proposed algorithm.
- Abstract(参考訳): フェデレートラーニング(FL)は、多数のエッジコンピューティングデバイスがグローバルラーニングモデルを協調的にトレーニングできるようにする、有望なテクニックである。
プライバシー上の懸念から、デバイス上の生データは集中型サーバでは利用できない。
スペクトル制限と計算能力に制約されるため、訓練されたモデルをトレーニングし、集約のために集中サーバに送信できるデバイスはごく一部のみである。
局所的なデータ分布はすべてのデバイスで異なるため、クラス不均衡問題は不都合なクライアントの選択とともに発生し、グローバルモデルの収束速度が遅くなる。
本稿では,生データを意識せずにクラス分布を明らかにするための推定手法を提案する。
本手法に基づいて,クラス不均衡を最小化するためのデバイス選択アルゴリズムを提案し,グローバルモデルの収束性能を向上させることができる。
シミュレーションの結果,提案アルゴリズムの有効性が示された。
関連論文リスト
- Efficient Data Distribution Estimation for Accelerated Federated Learning [5.085889377571319]
Federated Learning(FL)は、多数の分散エッジデバイスでグローバルモデルをその場でトレーニングする、プライバシ保護機械学習パラダイムである。
デバイスはシステムリソースとトレーニングデータの両方において非常に異質である。
様々なクライアント選択アルゴリズムが開発され、モデルカバレッジと精度の点で有望な性能向上を示している。
論文 参考訳(メタデータ) (2024-06-03T20:33:17Z) - Communication Efficient ConFederated Learning: An Event-Triggered SAGA
Approach [67.27031215756121]
Federated Learning(FL)は、さまざまなデータソース上のローカルデータを収集することなく、モデルトレーニングをターゲットとする機械学習パラダイムである。
単一のサーバを使用するStandard FLは、限られた数のユーザしかサポートできないため、学習能力の低下につながる。
本研究では,多数のユーザに対応するために,emphConfederated Learning(CFL)と呼ばれるマルチサーバFLフレームワークを検討する。
論文 参考訳(メタデータ) (2024-02-28T03:27:10Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
フェデレーション学習(FL)は、データプライバシを保護しながら、エッジデバイス間での分散学習を可能にする。
これらの課題を克服するために、部分的なモデルプルーニングとパーソナライズを備えたFLフレームワークを検討する。
このフレームワークは、学習モデルを、データ表現を学ぶためにすべてのデバイスと共有されるモデルプルーニングと、特定のデバイスのために微調整されるパーソナライズされた部分とで、グローバルな部分に分割する。
論文 参考訳(メタデータ) (2023-09-04T21:10:45Z) - Addressing Class Variable Imbalance in Federated Semi-supervised
Learning [10.542178602467885]
我々は,クラス変数の不均衡を解決するために,FCVI(Federated Semi-supervised Learning for Class Variable Im Balance)を提案する。
FCVIは、クラス数の変化によるデータの不均衡を軽減するために使用される。
クライアントのプライバシを維持しながら,ベースライン方式よりもはるかに優れた手法であることが実証された。
論文 参考訳(メタデータ) (2023-03-21T12:50:17Z) - Time-sensitive Learning for Heterogeneous Federated Edge Intelligence [52.83633954857744]
フェデレーションエッジインテリジェンス(FEI)システムにおけるリアルタイム機械学習について検討する。
FEIシステムは異種通信と計算資源分布を示す。
本稿では,共有MLモデルの協調学習における全体の実行時間を最小化するために,時間依存型フェデレーションラーニング(TS-FL)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-01-26T08:13:22Z) - Stochastic Coded Federated Learning: Theoretical Analysis and Incentive
Mechanism Design [18.675244280002428]
我々は、コード化されたコンピューティング技術を活用する新しいFLフレームワーク、コード付きフェデレーションラーニング(SCFL)を提案する。
SCFLでは、各エッジデバイスがプライバシを保存するコード化されたデータセットをサーバにアップロードする。
SCFLは、与えられた時間内でより良いモデルを学び、ベースライン方式よりも優れたプライバシーとパフォーマンスのトレードオフを実現する。
論文 参考訳(メタデータ) (2022-11-08T09:58:36Z) - FedHiSyn: A Hierarchical Synchronous Federated Learning Framework for
Resource and Data Heterogeneity [56.82825745165945]
フェデレートラーニング(FL)は、データプライバシを保護するために複数のデバイスに格納された分散生データを共有することなく、グローバルモデルのトレーニングを可能にする。
本稿では,階層型同期FLフレームワークであるFedHiSynを提案し,トラグラー効果や時代遅れモデルの問題に対処する。
提案手法は,MNIST,EMNIST,CIFAR10,CIFAR100のデータセットと多種多様なデバイス設定に基づいて評価する。
論文 参考訳(メタデータ) (2022-06-21T17:23:06Z) - Federated Learning Based on Dynamic Regularization [43.137064459520886]
本稿では,ニューラルネットワークモデルを分散学習するための新しいフェデレーション学習手法を提案する。
サーバは、各ラウンドでランダムに選択されたデバイスのサブセット間の協力を編成する。
論文 参考訳(メタデータ) (2021-11-08T03:58:28Z) - Fast-Convergent Federated Learning [82.32029953209542]
フェデレーション学習は、モバイルデバイスの現代的なネットワークを介して機械学習タスクを分散するための、有望なソリューションである。
本稿では,FOLBと呼ばれる高速収束型フェデレーション学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-26T14:37:51Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
フェデレートラーニング(Federated Learning)は、無線デバイスとのコラボレーションによって、中央サーバでグローバルモデルをトレーニングするための、プライバシ保護のアプローチである。
本稿では,大規模マルチインプット多出力通信システム上でのフェデレーション学習のための圧縮センシング手法を提案する。
論文 参考訳(メタデータ) (2020-03-18T05:56:27Z) - Coded Federated Learning [5.375775284252717]
フェデレートラーニング(Federated Learning)とは、クライアントデバイスに分散した分散データからグローバルモデルをトレーニングする手法である。
この結果から,CFLでは,符号化されていない手法に比べて,大域的モデルを約4倍の速度で収束させることができることがわかった。
論文 参考訳(メタデータ) (2020-02-21T23:06:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。