論文の概要: Time Series Data Imputation: A Survey on Deep Learning Approaches
- arxiv url: http://arxiv.org/abs/2011.11347v1
- Date: Mon, 23 Nov 2020 11:57:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-22 01:17:02.296229
- Title: Time Series Data Imputation: A Survey on Deep Learning Approaches
- Title(参考訳): 時系列データ計算:ディープラーニングアプローチに関する調査
- Authors: Chenguang Fang, Chen Wang
- Abstract要約: 時系列データ計算は、様々なカテゴリのメソッドでよく研究されている問題である。
ディープラーニングに基づく時系列手法は、RNNのようなモデルの使用によって進歩している。
我々は,それらのモデルアーキテクチャ,その長所,短所,短所,および時系列計算手法の開発を示す効果をレビューし,議論する。
- 参考スコア(独自算出の注目度): 4.4458738910060775
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series are all around in real-world applications. However, unexpected
accidents for example broken sensors or missing of the signals will cause
missing values in time series, making the data hard to be utilized. It then
does harm to the downstream applications such as traditional classification or
regression, sequential data integration and forecasting tasks, thus raising the
demand for data imputation. Currently, time series data imputation is a
well-studied problem with different categories of methods. However, these works
rarely take the temporal relations among the observations and treat the time
series as normal structured data, losing the information from the time data. In
recent, deep learning models have raised great attention. Time series methods
based on deep learning have made progress with the usage of models like RNN,
since it captures time information from data. In this paper, we mainly focus on
time series imputation technique with deep learning methods, which recently
made progress in this field. We will review and discuss their model
architectures, their pros and cons as well as their effects to show the
development of the time series imputation methods.
- Abstract(参考訳): 時系列は、すべて現実世界のアプリケーションにある。
しかし、センサーの故障や信号の欠如といった予期せぬ事故は時系列の値の欠落を引き起こし、データの利用が困難になる。
そして、従来の分類や回帰、シーケンシャルなデータ統合、予測タスクといった下流のアプリケーションに悪影響を与えるため、データ計算の要求が高まる。
現在、時系列データ計算は様々なカテゴリのメソッドでよく研究されている問題である。
しかし、これらの研究は観測間の時間的関係を取り、時系列を通常の構造化データとして扱い、時間データから情報を失うことは滅多にない。
近年、ディープラーニングモデルに大きな注目を集めている。
深層学習に基づく時系列手法は、データから時系列情報をキャプチャするため、RNNのようなモデルの使用に進歩している。
本稿では,この分野で最近進歩を遂げた深層学習手法を用いた時系列計算技術に着目した。
我々は,それらのモデルアーキテクチャ,その長所,短所,短所,および時系列計算手法の開発を示す効果をレビューし,議論する。
関連論文リスト
- Chronos: Learning the Language of Time Series [79.38691251254173]
Chronosは事前訓練された確率的時系列モデルのためのフレームワークである。
クロノスモデルでは,様々な領域の時系列データを利用して,未知の予測タスクにおけるゼロショット精度を向上させることができることを示す。
論文 参考訳(メタデータ) (2024-03-12T16:53:54Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Pushing the Limits of Pre-training for Time Series Forecasting in the
CloudOps Domain [54.67888148566323]
クラウドオペレーションドメインから,大規模時系列予測データセットを3つ導入する。
強力なゼロショットベースラインであり、モデルとデータセットサイズの両方において、さらなるスケーリングの恩恵を受けています。
これらのデータセットと結果を取得することは、古典的および深層学習のベースラインを事前訓練された方法と比較した総合的なベンチマーク結果の集合である。
論文 参考訳(メタデータ) (2023-10-08T08:09:51Z) - Development of a Neural Network-based Method for Improved Imputation of
Missing Values in Time Series Data by Repurposing DataWig [1.8719295298860394]
時系列データの欠落は頻繁に発生し、成功した分析に障害を与える。
時系列データの堅牢な計算のために様々な手法が試みられているが、最も先進的な手法でさえもまだ課題に直面している。
大規模なデータセットを処理する能力を持つニューラルネットワークベースの方法であるDataWigを修正して、tsDataWig(時系列データウィグ)を開発しました。
元のDataWigとは異なり、tsDataWigは時間変数の値を直接処理し、複雑な時間で欠落した値をインプットする。
論文 参考訳(メタデータ) (2023-08-18T15:53:40Z) - Time-Varying Propensity Score to Bridge the Gap between the Past and Present [104.46387765330142]
本稿では,データ分布の段階的変化を検出するための時間変化確率スコアを提案する。
実装のさまざまな方法を示し、さまざまな問題について評価する。
論文 参考訳(メタデータ) (2022-10-04T07:21:49Z) - STING: Self-attention based Time-series Imputation Networks using GAN [4.052758394413726]
GANを用いたSING(Self-attention based Time-Series Imputation Networks)を提案する。
我々は、時系列の潜在表現を学習するために、生成的対向ネットワークと双方向リカレントニューラルネットワークを利用する。
3つの実世界のデータセットによる実験結果から、STINGは既存の最先端手法よりも計算精度が優れていることが示された。
論文 参考訳(メタデータ) (2022-09-22T06:06:56Z) - Networked Time Series Prediction with Incomplete Data [59.45358694862176]
我々は、歴史と未来の両方で欠落した値を持つ不完全なデータでトレーニングできる新しいディープラーニングフレームワークであるNetS-ImpGANを提案する。
3つの実世界のデータセットに対して、異なるパターンと欠落率で広範な実験を行う。
論文 参考訳(メタデータ) (2021-10-05T18:20:42Z) - Deep Time Series Models for Scarce Data [8.673181404172963]
時系列データは多くの領域で爆発的な速度で成長し、時系列モデリング研究の急増を刺激している。
データ希少性は、膨大なデータ分析の問題で発生する普遍的な問題です。
論文 参考訳(メタデータ) (2021-03-16T22:16:54Z) - Time-Series Imputation with Wasserstein Interpolation for Optimal
Look-Ahead-Bias and Variance Tradeoff [66.59869239999459]
ファイナンスでは、ポートフォリオ最適化モデルをトレーニングする前に、損失の計算を適用することができる。
インキュベーションのために全データセットを使用するルックアヘッドバイアスと、トレーニングデータのみを使用することによるインキュベーションの大きなばらつきとの間には、本質的にトレードオフがある。
提案手法は,提案法における差分とルックアヘッドバイアスのトレードオフを最適に制御するベイズ後部コンセンサス分布である。
論文 参考訳(メタデータ) (2021-02-25T09:05:35Z) - Adjusting for Autocorrelated Errors in Neural Networks for Time Series
Regression and Forecasting [10.659189276058948]
我々は,自己相関係数をモデルパラメータと組み合わせて学習し,自己相関誤差の補正を行う。
時系列回帰では,大規模な実験により,本手法がPrais-Winsten法より優れていることが示された。
実世界の幅広いデータセットを対象とした結果から,ほぼすべてのケースにおいて,本手法が性能を向上させることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T04:25:51Z) - Neural ODEs for Informative Missingness in Multivariate Time Series [0.7233897166339269]
例えば、センサデータ、医療、天候といった実践的な応用は、真に連続したデータを生成する。
GRU-Dと呼ばれるディープラーニングモデルは、時系列データにおける情報不足に対処するための初期の試みである。
ニューラルネットワークの新しいファミリーであるNeural ODEsは、連続した時系列データを処理するのに自然で効率的である。
論文 参考訳(メタデータ) (2020-05-20T00:28:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。