Analysis of Empirical Mode Decomposition-based Load and Renewable Time
Series Forecasting
- URL: http://arxiv.org/abs/2011.11410v1
- Date: Mon, 23 Nov 2020 14:08:39 GMT
- Title: Analysis of Empirical Mode Decomposition-based Load and Renewable Time
Series Forecasting
- Authors: Nima Safari, George Price, Chi Yung Chung
- Abstract summary: Time series (TS) related to historical load and renewable generation are decomposed into intrinsic mode functions (IMFs)
The method is prone to several issues, including modal aliasing and boundary effect problems.
Underestimating these issues can lead to poor performance of the forecast model in real-time applications.
- Score: 1.1602089225841632
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The empirical mode decomposition (EMD) method and its variants have been
extensively employed in the load and renewable forecasting literature. Using
this multiresolution decomposition, time series (TS) related to the historical
load and renewable generation are decomposed into several intrinsic mode
functions (IMFs), which are less non-stationary and non-linear. As such, the
prediction of the components can theoretically be carried out with notably
higher precision. The EMD method is prone to several issues, including modal
aliasing and boundary effect problems, but the TS decomposition-based load and
renewable generation forecasting literature primarily focuses on comparing the
performance of different decomposition approaches from the forecast accuracy
standpoint; as a result, these problems have rarely been scrutinized.
Underestimating these issues can lead to poor performance of the forecast model
in real-time applications. This paper examines these issues and their
importance in the model development stage. Using real-world data, EMD-based
models are presented, and the impact of the boundary effect is illustrated.
Related papers
- On conditional diffusion models for PDE simulations [53.01911265639582]
We study score-based diffusion models for forecasting and assimilation of sparse observations.
We propose an autoregressive sampling approach that significantly improves performance in forecasting.
We also propose a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths.
arXiv Detail & Related papers (2024-10-21T18:31:04Z) - Unveiling the Flaws: A Critical Analysis of Initialization Effect on Time Series Anomaly Detection [6.923007095578702]
Deep learning for time-series anomaly detection (TSAD) has gained significant attention over the past decade.
Recent studies have cast doubt on these models, attributing their results to flawed evaluation techniques.
This paper provides a critical analysis of the effects on TSAD model performance.
arXiv Detail & Related papers (2024-08-13T04:08:17Z) - Fuxi-DA: A Generalized Deep Learning Data Assimilation Framework for Assimilating Satellite Observations [15.934673617658609]
Deep learning models have shown promise in matching, even surpassing, the forecast accuracy of leading NWP models worldwide.
This study introduces FuxiDA, a generalized DL-based DA framework for assimilating satellite observations.
By assimilating data from Advanced Geosynchronous Radiation Imager (AGRI) aboard Fengyun-4B, FuXi-DA consistently mitigates analysis errors and significantly improves forecast performance.
arXiv Detail & Related papers (2024-04-12T15:02:14Z) - PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
We present PDETime, a novel LMTF model inspired by the principles of Neural PDE solvers.
Our experimentation across seven diversetemporal real-world LMTF datasets reveals that PDETime adapts effectively to the intrinsic nature of the data.
arXiv Detail & Related papers (2024-02-25T17:39:44Z) - On Inference Stability for Diffusion Models [6.846175045133414]
Denoising Probabilistic Models (DPMs) represent an emerging domain of generative models that excel in generating diverse and high-quality images.
Most current training methods for DPMs often neglect the correlation between timesteps, limiting the model's performance in generating images effectively.
We propose a novel textVinitsequence-aware loss that aims to reduce the estimation gap to enhance the sampling quality.
arXiv Detail & Related papers (2023-12-19T18:57:34Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
We show how a PAC-Bayes bound is obtained for a general class of models, characterizing factors which influence performance in the interpolating regime.
We quantify how the test error for overparameterized models achieving effectively zero training error depends on the quality of the implicit regularization imposed by e.g. the combination of model, parameter-initialization scheme.
arXiv Detail & Related papers (2023-11-13T01:48:08Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
Investigation focuses on the models' ability to handle a range of perturbations, such as sensor faults and noise.
We test the generalization and transfer learning capabilities of these models by exposing them to out-of-distribution (OOD) samples.
arXiv Detail & Related papers (2023-06-13T12:43:59Z) - Discovering Predictable Latent Factors for Time Series Forecasting [39.08011991308137]
We develop a novel framework for inferring the intrinsic latent factors implied by the observable time series.
We introduce three characteristics, i.e., predictability, sufficiency, and identifiability, and model these characteristics via the powerful deep latent dynamics models.
Empirical results on multiple real datasets show the efficiency of our method for different kinds of time series forecasting.
arXiv Detail & Related papers (2023-03-18T14:37:37Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - Deep Switching Auto-Regressive Factorization:Application to Time Series
Forecasting [16.934920617960085]
DSARF approximates high dimensional data by a product variables between time dependent weights and spatially dependent factors.
DSARF is different from the state-of-the-art techniques in that it parameterizes the weights in terms of a deep switching vector auto-regressive factorization.
Our experiments attest the superior performance of DSARF in terms of long- and short-term prediction error, when compared with the state-of-the-art methods.
arXiv Detail & Related papers (2020-09-10T20:15:59Z) - Transformer Hawkes Process [79.16290557505211]
We propose a Transformer Hawkes Process (THP) model, which leverages the self-attention mechanism to capture long-term dependencies.
THP outperforms existing models in terms of both likelihood and event prediction accuracy by a notable margin.
We provide a concrete example, where THP achieves improved prediction performance for learning multiple point processes when incorporating their relational information.
arXiv Detail & Related papers (2020-02-21T13:48:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.