Discovering Predictable Latent Factors for Time Series Forecasting
- URL: http://arxiv.org/abs/2303.10426v2
- Date: Wed, 29 Nov 2023 07:44:00 GMT
- Title: Discovering Predictable Latent Factors for Time Series Forecasting
- Authors: Jingyi Hou, Zhen Dong, Jiayu Zhou, Zhijie Liu
- Abstract summary: We develop a novel framework for inferring the intrinsic latent factors implied by the observable time series.
We introduce three characteristics, i.e., predictability, sufficiency, and identifiability, and model these characteristics via the powerful deep latent dynamics models.
Empirical results on multiple real datasets show the efficiency of our method for different kinds of time series forecasting.
- Score: 39.08011991308137
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern time series forecasting methods, such as Transformer and its variants,
have shown strong ability in sequential data modeling. To achieve high
performance, they usually rely on redundant or unexplainable structures to
model complex relations between variables and tune the parameters with
large-scale data. Many real-world data mining tasks, however, lack sufficient
variables for relation reasoning, and therefore these methods may not properly
handle such forecasting problems. With insufficient data, time series appear to
be affected by many exogenous variables, and thus, the modeling becomes
unstable and unpredictable. To tackle this critical issue, in this paper, we
develop a novel algorithmic framework for inferring the intrinsic latent
factors implied by the observable time series. The inferred factors are used to
form multiple independent and predictable signal components that enable not
only sparse relation reasoning for long-term efficiency but also reconstructing
the future temporal data for accurate prediction. To achieve this, we introduce
three characteristics, i.e., predictability, sufficiency, and identifiability,
and model these characteristics via the powerful deep latent dynamics models to
infer the predictable signal components. Empirical results on multiple real
datasets show the efficiency of our method for different kinds of time series
forecasting. The statistical analysis validates the predictability of the
learned latent factors.
Related papers
- DLFormer: Enhancing Explainability in Multivariate Time Series Forecasting using Distributed Lag Embedding [4.995397953581609]
This study introduces DLFormer, an attention-based architecture integrated with distributed lag embedding.
It showcases superior performance improvements compared to existing attention-based high-performance models.
arXiv Detail & Related papers (2024-08-29T20:39:54Z) - Learning Graph Structures and Uncertainty for Accurate and Calibrated Time-series Forecasting [65.40983982856056]
We introduce STOIC, that leverages correlations between time-series to learn underlying structure between time-series and to provide well-calibrated and accurate forecasts.
Over a wide-range of benchmark datasets STOIC provides 16% more accurate and better-calibrated forecasts.
arXiv Detail & Related papers (2024-07-02T20:14:32Z) - The Capacity and Robustness Trade-off: Revisiting the Channel
Independent Strategy for Multivariate Time Series Forecasting [50.48888534815361]
We show that models trained with the Channel Independent (CI) strategy outperform those trained with the Channel Dependent (CD) strategy.
Our results conclude that the CD approach has higher capacity but often lacks robustness to accurately predict distributionally drifted time series.
We propose a modified CD method called Predict Residuals with Regularization (PRReg) that can surpass the CI strategy.
arXiv Detail & Related papers (2023-04-11T13:15:33Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - Deep Switching Auto-Regressive Factorization:Application to Time Series
Forecasting [16.934920617960085]
DSARF approximates high dimensional data by a product variables between time dependent weights and spatially dependent factors.
DSARF is different from the state-of-the-art techniques in that it parameterizes the weights in terms of a deep switching vector auto-regressive factorization.
Our experiments attest the superior performance of DSARF in terms of long- and short-term prediction error, when compared with the state-of-the-art methods.
arXiv Detail & Related papers (2020-09-10T20:15:59Z) - Transformer Hawkes Process [79.16290557505211]
We propose a Transformer Hawkes Process (THP) model, which leverages the self-attention mechanism to capture long-term dependencies.
THP outperforms existing models in terms of both likelihood and event prediction accuracy by a notable margin.
We provide a concrete example, where THP achieves improved prediction performance for learning multiple point processes when incorporating their relational information.
arXiv Detail & Related papers (2020-02-21T13:48:13Z) - Multivariate Probabilistic Time Series Forecasting via Conditioned
Normalizing Flows [8.859284959951204]
Time series forecasting is fundamental to scientific and engineering problems.
Deep learning methods are well suited for this problem.
We show that it improves over the state-of-the-art for standard metrics on many real-world data sets.
arXiv Detail & Related papers (2020-02-14T16:16:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.