Concentration inequality for U-statistics of order two for uniformly
ergodic Markov chains
- URL: http://arxiv.org/abs/2011.11435v4
- Date: Fri, 18 Mar 2022 09:00:50 GMT
- Title: Concentration inequality for U-statistics of order two for uniformly
ergodic Markov chains
- Authors: Quentin Duchemin (LAMA), Yohann de Castro (ICJ), Claire Lacour (LAMA)
- Abstract summary: We prove a concentration inequality for U-statistics of order two for uniformly ergodic Markov chains.
We show that we can recover the convergence rate of Arcones and Gin'e who proved a concentration result for U-statistics of independent random variables and canonical kernels.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We prove a new concentration inequality for U-statistics of order two for
uniformly ergodic Markov chains. Working with bounded and $\pi$-canonical
kernels, we show that we can recover the convergence rate of Arcones and
Gin{\'e} who proved a concentration result for U-statistics of independent
random variables and canonical kernels. Our result allows for a dependence of
the kernels $h_{i,j}$ with the indexes in the sums, which prevents the use of
standard blocking tools. Our proof relies on an inductive analysis where we use
martingale techniques, uniform ergodicity, Nummelin splitting and Bernstein's
type inequality. Assuming further that the Markov chain starts from its
invariant distribution, we prove a Bernstein-type concentration inequality that
provides sharper convergence rate for small variance terms.
Related papers
- Sharp Matrix Empirical Bernstein Inequalities [30.14855064043107]
We present two sharp empirical Bernstein inequalities for symmetric random matrices with bounded eigenvalues.
By sharp, we mean that both inequalities adapt to the unknown variance in a tight manner.
arXiv Detail & Related papers (2024-11-14T15:27:18Z) - Fast Convergence of $Φ$-Divergence Along the Unadjusted Langevin Algorithm and Proximal Sampler [14.34147140416535]
We study the mixing time of two popular discrete time Markov chains in continuous space.
We show that any $Phi$-divergence arising from a twice-differentiable strictly convex function $Phi$ converges to $0$ exponentially fast along these Markov chains.
arXiv Detail & Related papers (2024-10-14T16:41:45Z) - Breaking the Heavy-Tailed Noise Barrier in Stochastic Optimization Problems [56.86067111855056]
We consider clipped optimization problems with heavy-tailed noise with structured density.
We show that it is possible to get faster rates of convergence than $mathcalO(K-(alpha - 1)/alpha)$, when the gradients have finite moments of order.
We prove that the resulting estimates have negligible bias and controllable variance.
arXiv Detail & Related papers (2023-11-07T17:39:17Z) - Ito Diffusion Approximation of Universal Ito Chains for Sampling, Optimization and Boosting [64.0722630873758]
We consider rather general and broad class of Markov chains, Ito chains, that look like Euler-Maryama discretization of some Differential Equation.
We prove the bound in $W_2$-distance between the laws of our Ito chain and differential equation.
arXiv Detail & Related papers (2023-10-09T18:38:56Z) - Covariate shift in nonparametric regression with Markovian design [0.0]
We show that convergence rates for a smoothness risk of a Nadaraya-Watson kernel estimator are determined by the similarity between the invariant distributions associated to source and target Markov chains.
We extend the notion of a distribution exponent from Kpotufe and Martinet to kernel transfer exponents of uniformly ergodic Markov chains.
arXiv Detail & Related papers (2023-07-17T14:24:27Z) - Rosenthal-type inequalities for linear statistics of Markov chains [20.606986885851573]
We establish novel deviation bounds for additive functionals of geometrically ergodic Markov chains.
We pay special attention to the dependence of our bounds on the mixing time of the corresponding chain.
arXiv Detail & Related papers (2023-03-10T10:24:46Z) - Targeted Separation and Convergence with Kernel Discrepancies [61.973643031360254]
kernel-based discrepancy measures are required to (i) separate a target P from other probability measures or (ii) control weak convergence to P.
In this article we derive new sufficient and necessary conditions to ensure (i) and (ii)
For MMDs on separable metric spaces, we characterize those kernels that separate Bochner embeddable measures and introduce simple conditions for separating all measures with unbounded kernels.
arXiv Detail & Related papers (2022-09-26T16:41:16Z) - Optimal policy evaluation using kernel-based temporal difference methods [78.83926562536791]
We use kernel Hilbert spaces for estimating the value function of an infinite-horizon discounted Markov reward process.
We derive a non-asymptotic upper bound on the error with explicit dependence on the eigenvalues of the associated kernel operator.
We prove minimax lower bounds over sub-classes of MRPs.
arXiv Detail & Related papers (2021-09-24T14:48:20Z) - Three rates of convergence or separation via U-statistics in a dependent
framework [5.929956715430167]
We put this theoretical breakthrough into action by pushing further the current state of knowledge in three different active fields of research.
First, we establish a new exponential inequality for the estimation of spectra of trace class integral operators with MCMC methods.
In addition, we investigate generalization performance of online algorithms working with pairwise loss functions and Markov chain samples.
arXiv Detail & Related papers (2021-06-24T07:10:36Z) - Spectral clustering under degree heterogeneity: a case for the random
walk Laplacian [83.79286663107845]
This paper shows that graph spectral embedding using the random walk Laplacian produces vector representations which are completely corrected for node degree.
In the special case of a degree-corrected block model, the embedding concentrates about K distinct points, representing communities.
arXiv Detail & Related papers (2021-05-03T16:36:27Z) - Metrizing Weak Convergence with Maximum Mean Discrepancies [88.54422104669078]
This paper characterizes the maximum mean discrepancies (MMD) that metrize the weak convergence of probability measures for a wide class of kernels.
We prove that, on a locally compact, non-compact, Hausdorff space, the MMD of a bounded continuous Borel measurable kernel k, metrizes the weak convergence of probability measures if and only if k is continuous.
arXiv Detail & Related papers (2020-06-16T15:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.