Interatomic interaction of two ground-state atoms in vacuum:
contributions of vacuum fluctuations and radiation reaction
- URL: http://arxiv.org/abs/2011.11481v1
- Date: Mon, 23 Nov 2020 15:42:00 GMT
- Title: Interatomic interaction of two ground-state atoms in vacuum:
contributions of vacuum fluctuations and radiation reaction
- Authors: Wenting Zhou, Shijing Cheng, and Hongwei Yu
- Abstract summary: We generalize the formalism proposed by Dalibard, Dupont-Roc and Cohen-Tannoudji to the fourth order of the coupling constant.
We show that the interatomic potential can be attributed to the joint effect of both vacuum fluctuations and the radiation reaction of atoms.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We generalize the formalism proposed by Dalibard, Dupont-Roc and
Cohen-Tannoudji [the DDC formalism] to the fourth order of the coupling
constant, which can be used to study the interatomic interaction of two
ground-state atoms coupled with the vacuum scalar fields. We show that the
interatomic potential can be attributed to the joint effect of both vacuum
fluctuations and the radiation reaction of atoms. Remarkably, the formulae we
derived for the contributions of vacuum fluctuations and the radiation reaction
to the interatomic potential upon which future research on fourth-order effects
in particular circumstances can be based differ from those in the existing
literature [Phys. Rev. D 95, 085014 (2017)].
Related papers
- A functional approach to the Van der Waals interaction [0.0]
We use a functional integral approach to evaluate the quantum interaction energy between two neutral atoms.
We show that the resulting expression for the energy becomes the Van der Waals interaction energy at the first non-trivial order.
We also explore the opposite, strong-coupling limit, which yields a result for the interaction energy as well as a threshold for the existence of a vacuum decay probability.
arXiv Detail & Related papers (2023-02-01T19:14:28Z) - Vacuum-field-induced state mixing [0.49157446832511503]
We show a surprising decrease of decay rates within a considerable range of atom-nanoparticle separations.
Our work opens new quantum state manipulation possibilities in emitters with closely spaced energy levels.
arXiv Detail & Related papers (2022-12-22T11:14:08Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Gravitational Redshift Tests with Atomic Clocks and Atom Interferometers [55.4934126700962]
We characterize how the sensitivity to gravitational redshift violations arises in atomic clocks and atom interferometers.
We show that contributions beyond linear order to trapping potentials lead to such a sensitivity of trapped atomic clocks.
Guided atom interferometers are comparable to atomic clocks.
arXiv Detail & Related papers (2021-04-29T15:07:40Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Enhanced decoherence for a neutral particle sliding on a metallic
surface in vacuum [68.8204255655161]
We show that non-contact friction enhances the decoherence of the moving atom.
We suggest that measuring decoherence times through velocity dependence of coherences could indirectly demonstrate the existence of quantum friction.
arXiv Detail & Related papers (2020-11-06T17:34:35Z) - Collective spontaneous emission of two entangled atoms near an
oscillating mirror [50.591267188664666]
We consider the cooperative spontaneous emission of a system of two identical atoms, interacting with the electromagnetic field in the vacuum state.
Using time-dependent theory, we investigate the spectrum of the radiation emitted by the two-atom system.
We show that it is modulated in time, and that the presence of the oscillating mirror can enhance or inhibit the decay rate.
arXiv Detail & Related papers (2020-10-07T06:48:20Z) - Resonance interaction of two entangled atoms accelerating between two
mirrors [0.32771631221674324]
We show how radiative processes of the two-atom entangled state can be manipulated by the atomic configuration undergoing noninertial motion.
We evaluate the resonance energy shift and the relaxation rate of energy of the two atom system from the self-reaction contribution in the Heisenberg equation of motion.
arXiv Detail & Related papers (2020-07-30T14:03:47Z) - Effects of Conical Intersections on Hyperfine Quenching of Hydroxyl OH
in collision with an ultracold Sr atom [62.60678272919008]
We report on ultracold collision dynamics of the hydroxyl free-radical OH with Sr atoms leading to quenching of OH hyperfine states.
Our quantum-mechanical calculations of this process reveal that quenching is efficient due to anomalous molecular dynamics in the vicinity of the conical intersection.
arXiv Detail & Related papers (2020-06-26T23:27:25Z) - Radiation-reaction-induced transitions of two maximally entangled atoms
in non-inertial motion [0.0]
We study the average rate of change of energy of two identical two-level atoms interacting with the vacuum massless scalar field in synchronized motion.
We first show that for the two-atom system initially prepared in the factorizable eigenstates $|g_Ag_Brangle$ and $|e_Ae_Brangle$, both vacuum fluctuations and atomic radiation reaction contribute to the average rate of change of energy of the two-atom system.
We then consider two special cases of motion of the two-atom system which is initially prepared in the symmetric/antisymmetric entangled state
arXiv Detail & Related papers (2020-01-03T07:38:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.