論文の概要: Consolidation via Policy Information Regularization in Deep RL for
Multi-Agent Games
- arxiv url: http://arxiv.org/abs/2011.11517v1
- Date: Mon, 23 Nov 2020 16:28:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-22 02:12:15.651127
- Title: Consolidation via Policy Information Regularization in Deep RL for
Multi-Agent Games
- Title(参考訳): マルチエージェントゲームのためのディープRLにおけるポリシー情報規則化による統合
- Authors: Tyler Malloy, Tim Klinger, Miao Liu, Matthew Riemer, Gerald Tesauro,
Chris R. Sims
- Abstract要約: 本稿では,MADDPG(Multi-Agent Deep Deterministic Policy Gradient)強化学習アルゴリズムにおいて,学習ポリシの複雑さに関する情報理論的制約を導入する。
多エージェント協調型・競争型タスクの実験結果から,これらの環境における学習性能向上のための能力制限型アプローチがよい候補であることが示された。
- 参考スコア(独自算出の注目度): 21.46148507577606
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces an information-theoretic constraint on learned policy
complexity in the Multi-Agent Deep Deterministic Policy Gradient (MADDPG)
reinforcement learning algorithm. Previous research with a related approach in
continuous control experiments suggests that this method favors learning
policies that are more robust to changing environment dynamics. The multi-agent
game setting naturally requires this type of robustness, as other agents'
policies change throughout learning, introducing a nonstationary environment.
For this reason, recent methods in continual learning are compared to our
approach, termed Capacity-Limited MADDPG. Results from experimentation in
multi-agent cooperative and competitive tasks demonstrate that the
capacity-limited approach is a good candidate for improving learning
performance in these environments.
- Abstract(参考訳): 本稿では,MADDPG(Multi-Agent Deep Deterministic Policy Gradient)強化学習アルゴリズムにおいて,学習ポリシの複雑さに関する情報理論的制約を導入する。
継続的制御実験における関連するアプローチによる以前の研究は、この方法が環境力学の変化に対してより堅牢な学習方針を好むことを示唆している。
マルチエージェントゲームの設定は、学習を通して他のエージェントのポリシーが変化し、非定常環境を導入するため、自然にこのような堅牢性を必要とする。
このため,近年の連続学習手法を,容量制限MADDPGと呼ぶ手法と比較した。
多エージェント協調型・競争型タスクの実験結果から,これらの環境における学習性能向上のための能力制限型アプローチがよい候補であることが示された。
関連論文リスト
- Learning Multimodal Behaviors from Scratch with Diffusion Policy Gradient [26.675822002049372]
Deep Diffusion Policy Gradient (DDiffPG)は、マルチモーダルポリシーから学習する新しいアクター批判アルゴリズムである。
DDiffPGはマルチモーダルトレーニングバッチを形成し、モード固有のQ-ラーニングを使用して、RL目的の固有の欲求を緩和する。
さらに,本手法では,学習モードを明示的に制御するために,モード固有の埋め込みにポリシーを条件付けることができる。
論文 参考訳(メタデータ) (2024-06-02T09:32:28Z) - Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
政策勾配法(PG法)は連続強化学習(RL法)問題に対処する手法として成功している。
一般的には、収束(ハイパー)政治は、決定論的バージョンをデプロイするためにのみ学習される。
本稿では,サンプルの複雑性とデプロイされた決定論的ポリシのパフォーマンスのトレードオフを最適化するために,学習に使用する探索レベルの調整方法を示す。
論文 参考訳(メタデータ) (2024-05-03T16:45:15Z) - Projected Off-Policy Q-Learning (POP-QL) for Stabilizing Offline
Reinforcement Learning [57.83919813698673]
Projected Off-Policy Q-Learning (POP-QL) は、政治外のサンプルを同時に重み付け、分散を防止し、価値近似誤差を減らすためにポリシーを制約する新しいアクタ批判アルゴリズムである。
我々の実験では、POP-QLは標準ベンチマーク上での競合性能を示すだけでなく、データ収集ポリシーがかなり最適化されていないタスクにおいて競合するメソッドよりも優れています。
論文 参考訳(メタデータ) (2023-11-25T00:30:58Z) - Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
本研究では,高次元連続行動空間における強化学習のためのパラメータ化政策の課題について検討する。
本稿では,連続RLポリシーを最適軌道の生成モデルとしてモデル化する原理的フレームワークを提案する。
本稿では,マルチモーダルポリシーパラメータ化と学習世界モデルを活用した実用的モデルベースRL手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T09:05:46Z) - Mitigating Off-Policy Bias in Actor-Critic Methods with One-Step
Q-learning: A Novel Correction Approach [0.0]
我々は,このような不一致が継続的制御に与える影響を軽減するために,新しい政策類似度尺度を導入する。
本手法は、決定論的政策ネットワークに適用可能な、適切な単一ステップのオフ・ポリシー補正を提供する。
論文 参考訳(メタデータ) (2022-08-01T11:33:12Z) - Semi-On-Policy Training for Sample Efficient Multi-Agent Policy
Gradients [51.749831824106046]
本稿では,オンライン政策グラデーション手法のサンプル非効率性に効果的かつ効率的な手法として,セミ・オン・ポリティ(SOP)トレーニングを導入する。
提案手法は,様々なSMACタスクにおいて,最先端の値ベース手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2021-04-27T19:37:01Z) - Probabilistic Mixture-of-Experts for Efficient Deep Reinforcement
Learning [7.020079427649125]
学習効率と性能向上のためには,非特異な最適タスクに対する識別可能なスキルの把握が不可欠であることを示す。
マルチモーダル政策のための確率的混合専門家(PMOE)と、無差問題に対する新しい勾配推定器を提案する。
論文 参考訳(メタデータ) (2021-04-19T08:21:56Z) - Policy Information Capacity: Information-Theoretic Measure for Task
Complexity in Deep Reinforcement Learning [83.66080019570461]
課題の難易度について,環境にとらわれない,アルゴリズムにとらわれない2つの定量的指標を提案する。
これらの指標は、様々な代替案よりも、正規化タスク可解性スコアとの相関が高いことを示す。
これらのメトリクスは、鍵設計パラメータの高速かつ計算効率の良い最適化にも使用できる。
論文 参考訳(メタデータ) (2021-03-23T17:49:50Z) - A Policy Gradient Algorithm for Learning to Learn in Multiagent
Reinforcement Learning [47.154539984501895]
本稿では,マルチエージェント学習環境に固有の非定常的ポリシーダイナミクスを考慮に入れたメタマルチエージェントポリシー勾配定理を提案する。
これは、エージェント自身の非定常ポリシーダイナミクスと、環境内の他のエージェントの非定常ポリシーダイナミクスの両方を考慮するために、勾配更新をモデル化することによって達成される。
論文 参考訳(メタデータ) (2020-10-31T22:50:21Z) - Deep RL With Information Constrained Policies: Generalization in
Continuous Control [21.46148507577606]
情報フローに対する自然な制約は, 連続制御タスクにおいて, 人工エージェントに干渉する可能性があることを示す。
CLAC(Capacity-Limited Actor-Critic)アルゴリズムを実装した。
実験の結果、CLACは代替手法と比較して、トレーニング環境と修正テスト環境の一般化に改善をもたらすことがわかった。
論文 参考訳(メタデータ) (2020-10-09T15:42:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。