論文の概要: Studying Taxonomy Enrichment on Diachronic WordNet Versions
- arxiv url: http://arxiv.org/abs/2011.11536v1
- Date: Mon, 23 Nov 2020 16:49:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-22 02:01:53.886753
- Title: Studying Taxonomy Enrichment on Diachronic WordNet Versions
- Title(参考訳): Diachronic WordNet バージョンにおける分類学の充実に関する研究
- Authors: Irina Nikishina, Alexander Panchenko, Varvara Logacheva, Natalia
Loukachevitch
- Abstract要約: 本稿では,資源の乏しい環境での分類拡張の可能性について検討し,多数の言語に適用可能な手法を提案する。
我々は、分類の豊かさを訓練し評価するための新しい英語とロシア語のデータセットを作成し、他の言語のためのそのようなデータセットを作成する技術を記述する。
- 参考スコア(独自算出の注目度): 70.27072729280528
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ontologies, taxonomies, and thesauri are used in many NLP tasks. However,
most studies are focused on the creation of these lexical resources rather than
the maintenance of the existing ones. Thus, we address the problem of taxonomy
enrichment. We explore the possibilities of taxonomy extension in a
resource-poor setting and present methods which are applicable to a large
number of languages. We create novel English and Russian datasets for training
and evaluating taxonomy enrichment models and describe a technique of creating
such datasets for other languages.
- Abstract(参考訳): オントロジー、分類学、テサウリは多くのNLPタスクで使われている。
しかし、ほとんどの研究は、既存の資源の維持よりも、これらの語彙資源の創出に焦点を当てている。
したがって、分類学の豊か化の問題に対処する。
本稿では,多言語に適応可能な資源不足設定における分類拡張の可能性について検討する。
我々は,分類体系強化モデルを訓練し評価するための新しい英語とロシア語のデータセットを作成し,そのデータセットを他の言語向けに作成する手法を記述した。
関連論文リスト
- FLAME: Self-Supervised Low-Resource Taxonomy Expansion using Large
Language Models [19.863010475923414]
タコノミは、eコマース検索エンジンやレコメンデーションシステムなど、様々な現実世界のアプリケーションで実用性を見出す。
伝統的に監督された分類学の拡張アプローチは、限られた資源から生じる困難に遭遇する。
我々は,大規模言語モデルの能力を活用して,低資源環境における分類学拡張のための新しいアプローチであるFLAMEを提案する。
論文 参考訳(メタデータ) (2024-02-21T08:50:40Z) - Towards Visual Taxonomy Expansion [50.462998483087915]
本稿では,分類拡張タスクに視覚的特徴を導入し,VTE(Visual Taxonomy Expansion)を提案する。
テキストと視覚のセマンティクスをクラスタリングするためのテキストハイパーネミー学習タスクとビジュアルプロトタイプ学習タスクを提案する。
提案手法を2つのデータセットで評価し,有意な結果を得た。
論文 参考訳(メタデータ) (2023-09-12T10:17:28Z) - Taxonomy Enrichment with Text and Graph Vector Representations [61.814256012166794]
我々は,既存の分類学に新たな語を加えることを目的とした分類学の豊かさの問題に対処する。
我々は,この課題に対して,少ない労力で高い結果を得られる新しい手法を提案する。
我々は、異なるデータセットにわたる最先端の結果を達成し、ミスの詳細なエラー分析を提供する。
論文 参考訳(メタデータ) (2022-01-21T09:01:12Z) - QA Dataset Explosion: A Taxonomy of NLP Resources for Question Answering
and Reading Comprehension [41.6087902739702]
この調査は、これまでで最大の調査である。
我々は、現在のリソースの様々なフォーマットとドメインの概要を述べ、将来の作業における現在のラグナを強調します。
また、英語に対する過剰な焦点付けの影響についても論じ、他の言語や多言語リソースに対する現在のモノリンガルリソースについて調査する。
論文 参考訳(メタデータ) (2021-07-27T10:09:13Z) - Octet: Online Catalog Taxonomy Enrichment with Self-Supervision [67.26804972901952]
オンラインカタログエンリッチメンTのための自己教師型エンドツーエンドフレームワークOctopを提案する。
本稿では,用語抽出のためのシーケンスラベリングモデルをトレーニングし,分類構造を捉えるためにグラフニューラルネットワーク(GNN)を用いることを提案する。
Octetは、オンラインカタログを、オープンワールド評価の2倍に強化する。
論文 参考訳(メタデータ) (2020-06-18T04:53:07Z) - Linguistic Typology Features from Text: Inferring the Sparse Features of
World Atlas of Language Structures [73.06435180872293]
我々は、バイト埋め込みと畳み込み層に基づく繰り返しニューラルネットワーク予測器を構築する。
様々な言語型の特徴を確実に予測できることを示す。
論文 参考訳(メタデータ) (2020-04-30T21:00:53Z) - Low resource language dataset creation, curation and classification:
Setswana and Sepedi -- Extended Abstract [2.3801001093799115]
SetswanaとSepediのニュースの見出しに焦点を当てたデータセットを作成します。
分類のためのベースラインを提案し,低リソース言語に適したデータ拡張手法について検討する。
論文 参考訳(メタデータ) (2020-03-30T18:03:15Z) - Investigating an approach for low resource language dataset creation,
curation and classification: Setswana and Sepedi [2.3801001093799115]
SetswanaとSepediのニュースの見出しに焦点を当てたデータセットを作成します。
ニューストピックの分類タスクも作成します。
本稿では,低リソース言語に適したデータ拡張手法について検討する。
論文 参考訳(メタデータ) (2020-02-18T13:58:06Z) - TaxoExpan: Self-supervised Taxonomy Expansion with Position-Enhanced
Graph Neural Network [62.12557274257303]
分類学は機械解釈可能な意味論から成り、多くのウェブアプリケーションに貴重な知識を提供する。
そこで我々は,既存の分類学から,クエリの集合を自動生成するTaxoExpanという,新しい自己教師型フレームワークを提案する。
本研究では,(1)既存の分類学におけるアンカー概念の局所構造を符号化する位置強調グラフニューラルネットワーク,(2)学習モデルが自己超越データにおけるラベルノイズに敏感になるようなノイズローバスト学習の2つの手法を開発する。
論文 参考訳(メタデータ) (2020-01-26T21:30:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。