Purification and Entanglement Routing on Quantum Networks
- URL: http://arxiv.org/abs/2011.11644v1
- Date: Mon, 23 Nov 2020 19:00:01 GMT
- Title: Purification and Entanglement Routing on Quantum Networks
- Authors: Michelle Victora, Stefan Krastanov, Alexander Sanchez de la Cerda,
Steven Willis, and Prineha Narang
- Abstract summary: A quantum network equipped with imperfect channel fidelities and limited memory storage time can distribute entanglement between users.
We introduce effectives enabling fast path-finding algorithms for maximizing entanglement shared between two nodes on a quantum network.
- Score: 55.41644538483948
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present an approach to purification and entanglement routing on complex
quantum network architectures, that is, how a quantum network equipped with
imperfect channel fidelities and limited memory storage time can distribute
entanglement between users. We explore how network parameters influence the
performance of path-finding algorithms necessary for optimizing routing and, in
particular, we explore the interplay between the bandwidth of a quantum
channels and the choice of purification protocol. Finally, we demonstrate
multi-path routing on various network topologies with resource constraints, in
an effort to inform future design choices for quantum network configurations.
Our work optimizes both the choice of path over the quantum network and the
choice of purification schemes used between nodes. We consider not only
pair-production rate, but optimize over the fidelity of the delivered entangled
state. We introduce effective heuristics enabling fast path-finding algorithms
for maximizing entanglement shared between two nodes on a quantum network, with
performance comparable to that of a computationally-expensive brute-force path
search.
Related papers
- Entanglement Routing in Quantum Networks: A Comprehensive Survey [2.624902795082451]
Entanglement routing in near-term quantum networks consists of choosing the optimal sequence of short-range entanglements to combine.
We classify and discuss the studied quantum routing schemes into reactive, proactive, opportunistic, and virtual routing.
arXiv Detail & Related papers (2024-08-02T12:48:40Z) - Routing in Quantum Networks with End-to-End Knowledge [10.955844285189373]
We introduce an approach that facilitates the establishment of paths capable of delivering end-to-end fidelity above a specified threshold.
We define algorithms that are specific instances of this approach and evaluate them in comparison to Dijkstra shortest path algorithm and a fully knowledge-aware algorithm through simulations.
Our results demonstrate that one of the grey box algorithms consistently outperforms the other methods in delivering paths above the fidelity threshold.
arXiv Detail & Related papers (2024-07-19T15:34:51Z) - Differentiated Service Entanglement Routing for Quantum Networks [4.522468619087071]
We propose a differentiated service entanglement routing (DSER) scheme, which firstly finds out the lowest loss paths and supported wavelength channels with the tensor-based path searching algorithm, and then allocates the paired channels with the differentiated routing strategies.
The evaluation results show that the proposed DSER scheme can be performed for constructing various large scale quantum networks.
arXiv Detail & Related papers (2024-01-30T23:37:16Z) - Entangled Pair Resource Allocation under Uncertain Fidelity Requirements [59.83361663430336]
In quantum networks, effective entanglement routing facilitates communication between quantum source and quantum destination nodes.
We propose a resource allocation model for entangled pairs and an entanglement routing model with a fidelity guarantee.
Our proposed model can reduce the total cost by at least 20% compared to the baseline model.
arXiv Detail & Related papers (2023-04-10T07:16:51Z) - Multi-User Entanglement Distribution in Quantum Networks Using Multipath
Routing [55.2480439325792]
We propose three protocols that increase the entanglement rate of multi-user applications by leveraging multipath routing.
The protocols are evaluated on quantum networks with NISQ constraints, including limited quantum memories and probabilistic entanglement generation.
arXiv Detail & Related papers (2023-03-06T18:06:00Z) - Identifying network topologies via quantum walk distributions [0.0]
We use a genetic algorithm to retrieve the topology of a network from the measured probability distribution.
Our result shows that the algorithm is capable of efficiently retrieving the required information even in the presence of noise.
arXiv Detail & Related papers (2023-01-31T18:38:44Z) - Adaptive, Continuous Entanglement Generation for Quantum Networks [59.600944425468676]
Quantum networks rely on entanglement between qubits at distant nodes to transmit information.
We present an adaptive scheme that uses information from previous requests to better guide the choice of randomly generated quantum links.
We also explore quantum memory allocation scenarios, where a difference in latency performance implies the necessity of optimal allocation of resources for quantum networks.
arXiv Detail & Related papers (2022-12-17T05:40:09Z) - Fidelity-Guarantee Entanglement Routing in Quantum Networks [64.49733801962198]
Entanglement routing establishes remote entanglement connection between two arbitrary nodes.
We propose purification-enabled entanglement routing designs to provide fidelity guarantee for multiple Source-Destination (SD) pairs in quantum networks.
arXiv Detail & Related papers (2021-11-15T14:07:22Z) - Entanglement Rate Optimization in Heterogeneous Quantum Communication
Networks [79.8886946157912]
Quantum communication networks are emerging as a promising technology that could constitute a key building block in future communication networks in the 6G era and beyond.
Recent advances led to the deployment of small- and large-scale quantum communication networks with real quantum hardware.
In quantum networks, entanglement is a key resource that allows for data transmission between different nodes.
arXiv Detail & Related papers (2021-05-30T11:34:23Z) - Effective routing design for remote entanglement generation on quantum
networks [6.695045642641268]
Efficient entanglement generation on quantum networks with relatively limited resources such as quantum memories is essential to fully realize the network's capabilities.
We propose an effective routing scheme to enable automatic responses for multiple requests of entanglement generation between source-terminal stations.
Multiple connection paths are exploited for each connection request while entanglement fidelity is ensured for each path by performing entanglement purification.
arXiv Detail & Related papers (2020-01-07T18:16:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.