Resource-Efficient Compilation of Distributed Quantum Circuits for Solving Large-Scale Wireless Communication Network Problems
- URL: http://arxiv.org/abs/2501.10242v1
- Date: Fri, 17 Jan 2025 15:10:22 GMT
- Title: Resource-Efficient Compilation of Distributed Quantum Circuits for Solving Large-Scale Wireless Communication Network Problems
- Authors: Kuan-Cheng Chen, Felix Burt, Shang Yu, Chen-Yu Liu, Min-Hsiu Hsieh, Kin K. Leung,
- Abstract summary: optimizing routing in Wireless Sensor Networks (WSNs) is pivotal for minimizing energy consumption and extending network lifetime.
This paper introduces a resourceefficient compilation method for distributed quantum circuits tailored to address large-scale WSN routing problems.
- Score: 10.434368470402935
- License:
- Abstract: Optimizing routing in Wireless Sensor Networks (WSNs) is pivotal for minimizing energy consumption and extending network lifetime. This paper introduces a resourceefficient compilation method for distributed quantum circuits tailored to address large-scale WSN routing problems. Leveraging a hybrid classical-quantum framework, we employ spectral clustering for network partitioning and the Quantum Approximate Optimization Algorithm (QAOA) for optimizing routing within manageable subgraphs. We formulate the routing problem as a Quadratic Unconstrained Binary Optimization (QUBO) problem, providing comprehensive mathematical formulations and complexity analyses. Comparative evaluations against traditional classical algorithms demonstrate significant energy savings and enhanced scalability. Our approach underscores the potential of integrating quantum computing techniques into wireless communication networks, offering a scalable and efficient solution for future network optimization challenges
Related papers
- Generative AI-enabled Quantum Computing Networks and Intelligent
Resource Allocation [80.78352800340032]
Quantum computing networks execute large-scale generative AI computation tasks and advanced quantum algorithms.
efficient resource allocation in quantum computing networks is a critical challenge due to qubit variability and network complexity.
We introduce state-of-the-art reinforcement learning (RL) algorithms, from generative learning to quantum machine learning for optimal quantum resource allocation.
arXiv Detail & Related papers (2024-01-13T17:16:38Z) - Multi-Objective Optimization and Network Routing with Near-Term Quantum
Computers [0.2150989251218736]
We develop a scheme with which near-term quantum computers can be applied to solve multi-objective optimization problems.
We focus on an implementation based on the quantum approximate optimization algorithm (QAOA)
arXiv Detail & Related papers (2023-08-16T09:22:01Z) - Power network optimization: a quantum approach [0.0]
We show how to optimize transmission power networks with quantum annealing.
First, we define the QUBO problem for the partitioning of the network, and test the implementation on purely quantum and hybrid architectures.
We then solve the problem on the D-Wave hybrid CQM and BQM solvers, as well as on classical solvers available on Azure Quantum cloud.
arXiv Detail & Related papers (2022-12-03T14:49:09Z) - DQC$^2$O: Distributed Quantum Computing for Collaborative Optimization
in Future Networks [54.03701670739067]
We propose an adaptive distributed quantum computing approach to manage quantum computers and quantum channels for solving optimization tasks in future networks.
Based on the proposed approach, we discuss the potential applications for collaborative optimization in future networks, such as smart grid management, IoT cooperation, and UAV trajectory planning.
arXiv Detail & Related papers (2022-09-16T02:44:52Z) - Fidelity-Guarantee Entanglement Routing in Quantum Networks [64.49733801962198]
Entanglement routing establishes remote entanglement connection between two arbitrary nodes.
We propose purification-enabled entanglement routing designs to provide fidelity guarantee for multiple Source-Destination (SD) pairs in quantum networks.
arXiv Detail & Related papers (2021-11-15T14:07:22Z) - Controller-based Energy-Aware Wireless Sensor Network Routing using
Quantum Algorithms [15.607213703199209]
We show proof-of-principle for the use of a quantum processor instead of a classical processor, to find optimal or near-optimal solutions very quickly.
Preliminary results for small networks show that this approach using quantum computing has great promise and may open the door for other significant improvements in the efficacy of network algorithms.
arXiv Detail & Related papers (2021-10-12T20:16:21Z) - Entanglement Rate Optimization in Heterogeneous Quantum Communication
Networks [79.8886946157912]
Quantum communication networks are emerging as a promising technology that could constitute a key building block in future communication networks in the 6G era and beyond.
Recent advances led to the deployment of small- and large-scale quantum communication networks with real quantum hardware.
In quantum networks, entanglement is a key resource that allows for data transmission between different nodes.
arXiv Detail & Related papers (2021-05-30T11:34:23Z) - Data-Driven Random Access Optimization in Multi-Cell IoT Networks with
NOMA [78.60275748518589]
Non-orthogonal multiple access (NOMA) is a key technology to enable massive machine type communications (mMTC) in 5G networks and beyond.
In this paper, NOMA is applied to improve the random access efficiency in high-density spatially-distributed multi-cell wireless IoT networks.
A novel formulation of random channel access management is proposed, in which the transmission probability of each IoT device is tuned to maximize the geometric mean of users' expected capacity.
arXiv Detail & Related papers (2021-01-02T15:21:08Z) - Purification and Entanglement Routing on Quantum Networks [55.41644538483948]
A quantum network equipped with imperfect channel fidelities and limited memory storage time can distribute entanglement between users.
We introduce effectives enabling fast path-finding algorithms for maximizing entanglement shared between two nodes on a quantum network.
arXiv Detail & Related papers (2020-11-23T19:00:01Z) - Effective routing design for remote entanglement generation on quantum
networks [6.695045642641268]
Efficient entanglement generation on quantum networks with relatively limited resources such as quantum memories is essential to fully realize the network's capabilities.
We propose an effective routing scheme to enable automatic responses for multiple requests of entanglement generation between source-terminal stations.
Multiple connection paths are exploited for each connection request while entanglement fidelity is ensured for each path by performing entanglement purification.
arXiv Detail & Related papers (2020-01-07T18:16:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.