論文の概要: The Interpretable Dictionary in Sparse Coding
- arxiv url: http://arxiv.org/abs/2011.11805v1
- Date: Tue, 24 Nov 2020 00:26:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-21 12:07:42.828908
- Title: The Interpretable Dictionary in Sparse Coding
- Title(参考訳): スパース符号化における解釈可能な辞書
- Authors: Edward Kim, Connor Onweller, Andrew O'Brien, Kathleen McCoy
- Abstract要約: 我々の研究では、スパースコーディングを特定の空間的制約の下で訓練したANNが、標準的なディープラーニングモデルよりも解釈可能なモデルを生成することを説明している。
スパース符号で学習した辞書はより容易に理解でき、これらの要素の活性化は選択的な特徴出力を生成する。
- 参考スコア(独自算出の注目度): 4.205692673448206
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial neural networks (ANNs), specifically deep learning networks, have
often been labeled as black boxes due to the fact that the internal
representation of the data is not easily interpretable. In our work, we
illustrate that an ANN, trained using sparse coding under specific sparsity
constraints, yields a more interpretable model than the standard deep learning
model. The dictionary learned by sparse coding can be more easily understood
and the activations of these elements creates a selective feature output. We
compare and contrast our sparse coding model with an equivalent feed forward
convolutional autoencoder trained on the same data. Our results show both
qualitative and quantitative benefits in the interpretation of the learned
sparse coding dictionary as well as the internal activation representations.
- Abstract(参考訳): ニューラルネットワーク(anns)、特にディープラーニングネットワークは、データの内部表現が容易に解釈できないという事実から、しばしばブラックボックスとしてラベル付けされている。
我々の研究では、スパースコーディングを特定の空間的制約の下で訓練したANNが、標準的なディープラーニングモデルよりも解釈可能なモデルを生成する。
スパース符号で学習した辞書はより容易に理解でき、これらの要素の活性化は選択的特徴出力を生成する。
我々は、同じデータに基づいて訓練されたフィードフォワード畳み込みオートエンコーダと、スパース符号化モデルを比較し、対比する。
本結果は,学習したスパース符号辞書の解釈における質的,定量的な利点と,内部のアクティベーション表現を示す。
関連論文リスト
- Improving Deep Representation Learning via Auxiliary Learnable Target Coding [69.79343510578877]
本稿では,深層表現学習の補助的正規化として,新たな学習対象符号化を提案する。
具体的には、より差別的な表現を促進するために、マージンベースの三重項損失と、提案した目標符号上の相関整合損失を設計する。
論文 参考訳(メタデータ) (2023-05-30T01:38:54Z) - Sparse, Geometric Autoencoder Models of V1 [2.491226380993217]
本稿では,潜在表現が暗黙的に暗黙的に,スペクトルクラスタリングのために局所的に整理されたオートエンコーダアーキテクチャを提案する。
オートエンコーダの目的関数はスパース符号化フレームワークの中核的な概念を保ちつつも、受容領域の微分を記述するための有望な経路を提供することを示す。
論文 参考訳(メタデータ) (2023-02-22T06:07:20Z) - What Are You Token About? Dense Retrieval as Distributions Over the
Vocabulary [68.77983831618685]
本稿では,2つのエンコーダが生成するベクトル表現を,モデルの語彙空間に投影することで解釈する。
得られたプロジェクションは、リッチな意味情報を含み、それらの間の接続を描画し、スパース検索を行う。
論文 参考訳(メタデータ) (2022-12-20T16:03:25Z) - Revisiting Sparse Convolutional Model for Visual Recognition [40.726494290922204]
本稿では,画像分類のためのスパース畳み込みモデルについて再検討する。
CIFAR-10, CIFAR-100, ImageNetデータセット上でも同様に強力な実験性能を示した。
論文 参考訳(メタデータ) (2022-10-24T04:29:21Z) - Variable Bitrate Neural Fields [75.24672452527795]
本稿では,特徴格子を圧縮し,メモリ消費を最大100倍に削減する辞書手法を提案する。
辞書の最適化をベクトル量子化オートデコーダ問題として定式化し、直接監督できない空間において、エンドツーエンドの離散神経表現を学習する。
論文 参考訳(メタデータ) (2022-06-15T17:58:34Z) - Sparse Coding with Multi-Layer Decoders using Variance Regularization [19.8572592390623]
本稿では,デコーダの正規化を必要とせずに,符号の崩壊を防止する新しいスパース符号化プロトコルを提案する。
本手法は,各潜時符号成分が一定の閾値を超える分散を有するように,直接正規化する。
分散正規化法を用いて訓練した多層デコーダを用いたスパースオートエンコーダは、スペーサー表現を用いた高品質な再構成を実現する。
論文 参考訳(メタデータ) (2021-12-16T21:46:23Z) - Leveraging Sparse Linear Layers for Debuggable Deep Networks [86.94586860037049]
学習した深い特徴表現に疎い線形モデルを適用することで、よりデバッグ可能なニューラルネットワークを実現する方法を示す。
その結果、スパースな説明は、スプリアス相関を特定し、誤分類を説明し、視覚および言語タスクにおけるモデルバイアスを診断するのに役立ちます。
論文 参考訳(メタデータ) (2021-05-11T08:15:25Z) - SparseGAN: Sparse Generative Adversarial Network for Text Generation [8.634962333084724]
本稿では,識別器への入力として,意味解釈可能ながスパース文表現を生成するスパースGANを提案する。
このような意味豊かな表現により、効率の良い対人訓練のための不要なノイズを低減できるだけでなく、学習過程全体を完全に差別化できる。
論文 参考訳(メタデータ) (2021-03-22T04:44:43Z) - NSL: Hybrid Interpretable Learning From Noisy Raw Data [66.15862011405882]
本稿では,ラベル付き非構造データから解釈可能なルールを学習するニューラルシンボリック学習フレームワークNSLを提案する。
NSLは、機能抽出のためのトレーニング済みニューラルネットワークと、解集合セマンティクスに基づくルール学習のための最先端のILPシステムであるFastLASを組み合わせる。
NSLは、MNISTデータから堅牢なルールを学び、ニューラルネットワークやランダムフォレストベースラインと比較して、比較または優れた精度を達成できることを実証します。
論文 参考訳(メタデータ) (2020-12-09T13:02:44Z) - Category-Learning with Context-Augmented Autoencoder [63.05016513788047]
実世界のデータの解釈可能な非冗長表現を見つけることは、機械学習の鍵となる問題の一つである。
本稿では,オートエンコーダのトレーニングにデータ拡張を利用する新しい手法を提案する。
このような方法で変分オートエンコーダを訓練し、補助ネットワークによって変換結果を予測できるようにする。
論文 参考訳(メタデータ) (2020-10-10T14:04:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。