An end-to-end data-driven optimisation framework for constrained
trajectories
- URL: http://arxiv.org/abs/2011.11820v2
- Date: Fri, 5 Feb 2021 09:24:54 GMT
- Title: An end-to-end data-driven optimisation framework for constrained
trajectories
- Authors: Florent Dewez and Benjamin Guedj and Arthur Talpaert and Vincent
Vandewalle
- Abstract summary: We leverage data-driven approaches to design a new end-to-end framework for optimisation problems.
We apply our approach to two settings in aeronautics and sailing routes, yielding commanding results.
- Score: 4.73357470713202
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Many real-world problems require to optimise trajectories under constraints.
Classical approaches are based on optimal control methods but require an exact
knowledge of the underlying dynamics, which could be challenging or even out of
reach. In this paper, we leverage data-driven approaches to design a new
end-to-end framework which is dynamics-free for optimised and realistic
trajectories. We first decompose the trajectories on function basis, trading
the initial infinite dimension problem on a multivariate functional space for a
parameter optimisation problem. A maximum \emph{a posteriori} approach which
incorporates information from data is used to obtain a new optimisation problem
which is regularised. The penalised term focuses the search on a region
centered on data and includes estimated linear constraints in the problem. We
apply our data-driven approach to two settings in aeronautics and sailing
routes optimisation, yielding commanding results. The developed approach has
been implemented in the Python library PyRotor.
Related papers
- Generalizable Spacecraft Trajectory Generation via Multimodal Learning with Transformers [14.176630393074149]
We present a novel trajectory generation framework that generalizes across diverse problem configurations.
We leverage high-capacity transformer neural networks capable of learning from data sources.
The framework is validated through simulations and experiments on a free-flyer platform.
arXiv Detail & Related papers (2024-10-15T15:55:42Z) - Guided Trajectory Generation with Diffusion Models for Offline Model-based Optimization [19.228156994045587]
We introduce a novel conditional generative modeling approach to produce trajectories toward high-scoring regions.
Experiment results demonstrate that our method outperforms competitive baselines on Design-Bench.
arXiv Detail & Related papers (2024-06-29T06:12:36Z) - OTClean: Data Cleaning for Conditional Independence Violations using
Optimal Transport [51.6416022358349]
sys is a framework that harnesses optimal transport theory for data repair under Conditional Independence (CI) constraints.
We develop an iterative algorithm inspired by Sinkhorn's matrix scaling algorithm, which efficiently addresses high-dimensional and large-scale data.
arXiv Detail & Related papers (2024-03-04T18:23:55Z) - Large-Scale OD Matrix Estimation with A Deep Learning Method [70.78575952309023]
The proposed method integrates deep learning and numerical optimization algorithms to infer matrix structure and guide numerical optimization.
We conducted tests to demonstrate the good generalization performance of our method on a large-scale synthetic dataset.
arXiv Detail & Related papers (2023-10-09T14:30:06Z) - Predict+Optimize for Packing and Covering LPs with Unknown Parameters in
Constraints [5.762370982168012]
We propose a novel and practically relevant framework for the Predict+ setting, but with unknown parameters in both the objective and the constraints.
We introduce the notion of a correction function, and an additional penalty term in the loss function, modelling practical scenarios where an estimated optimal solution can be modified into a feasible solution after the true parameters are revealed.
Our approach is inspired by the prior work of Mandi and Guns, though with crucial modifications and re-derivations for our very different setting.
arXiv Detail & Related papers (2022-09-08T09:28:24Z) - Data-Driven Minimax Optimization with Expectation Constraints [9.373649142701803]
We propose a class of efficient primal-dual algorithms to tackle the minimax expectation-constrained problem.
We show that our algorithms converge at the optimal rate of $mathcalO(frac1sqrtN)$.
arXiv Detail & Related papers (2022-02-16T05:23:27Z) - A Surrogate Objective Framework for Prediction+Optimization with Soft
Constraints [29.962390392493507]
Decision-focused prediction approaches, such as SPO+ and direct optimization, have been proposed to fill this gap.
This paper proposes a novel analytically differentiable surrogate objective framework for real-world linear and semi-definite negative quadratic programming problems.
arXiv Detail & Related papers (2021-11-22T17:09:57Z) - JUMBO: Scalable Multi-task Bayesian Optimization using Offline Data [86.8949732640035]
We propose JUMBO, an MBO algorithm that sidesteps limitations by querying additional data.
We show that it achieves no-regret under conditions analogous to GP-UCB.
Empirically, we demonstrate significant performance improvements over existing approaches on two real-world optimization problems.
arXiv Detail & Related papers (2021-06-02T05:03:38Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
We argue for the use of neural generative models to characterize the worst-case distribution.
This approach poses a number of implementation and optimization challenges.
We find that the proposed approach yields models that are more robust than comparable baselines.
arXiv Detail & Related papers (2021-03-18T14:26:26Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
We consider data-driven optimization problems where one must maximize a function given only queries at a fixed set of points.
This problem setting emerges in many domains where function evaluation is a complex and expensive process.
We propose a tractable approximation that allows us to scale our method to high-capacity neural network models.
arXiv Detail & Related papers (2021-02-16T06:04:27Z) - Pushing the Envelope of Rotation Averaging for Visual SLAM [69.7375052440794]
We propose a novel optimization backbone for visual SLAM systems.
We leverage averaging to improve the accuracy, efficiency and robustness of conventional monocular SLAM systems.
Our approach can exhibit up to 10x faster with comparable accuracy against the state-art on public benchmarks.
arXiv Detail & Related papers (2020-11-02T18:02:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.