A Surrogate Objective Framework for Prediction+Optimization with Soft
Constraints
- URL: http://arxiv.org/abs/2111.11358v1
- Date: Mon, 22 Nov 2021 17:09:57 GMT
- Title: A Surrogate Objective Framework for Prediction+Optimization with Soft
Constraints
- Authors: Kai Yan and Jie Yan and Chuan Luo and Liting Chen and Qingwei Lin and
Dongmei Zhang
- Abstract summary: Decision-focused prediction approaches, such as SPO+ and direct optimization, have been proposed to fill this gap.
This paper proposes a novel analytically differentiable surrogate objective framework for real-world linear and semi-definite negative quadratic programming problems.
- Score: 29.962390392493507
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Prediction+optimization is a common real-world paradigm where we have to
predict problem parameters before solving the optimization problem. However,
the criteria by which the prediction model is trained are often inconsistent
with the goal of the downstream optimization problem. Recently,
decision-focused prediction approaches, such as SPO+ and direct optimization,
have been proposed to fill this gap. However, they cannot directly handle the
soft constraints with the $max$ operator required in many real-world
objectives. This paper proposes a novel analytically differentiable surrogate
objective framework for real-world linear and semi-definite negative quadratic
programming problems with soft linear and non-negative hard constraints. This
framework gives the theoretical bounds on constraints' multipliers, and derives
the closed-form solution with respect to predictive parameters and thus
gradients for any variable in the problem. We evaluate our method in three
applications extended with soft constraints: synthetic linear programming,
portfolio optimization, and resource provisioning, demonstrating that our
method outperforms traditional two-staged methods and other decision-focused
approaches.
Related papers
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
arXiv Detail & Related papers (2024-09-07T19:52:14Z) - Differentiation of Multi-objective Data-driven Decision Pipeline [34.577809430781144]
Real-world scenarios frequently involve multi-objective data-driven optimization problems.
Traditional two-stage methods apply a machine learning model to estimate problem coefficients, followed by invoking a solver to tackle the predicted optimization problem.
Recent efforts have focused on end-to-end training of predictive models that use decision loss derived from the downstream optimization problem.
arXiv Detail & Related papers (2024-06-02T15:42:03Z) - Learning Constrained Optimization with Deep Augmented Lagrangian Methods [54.22290715244502]
A machine learning (ML) model is trained to emulate a constrained optimization solver.
This paper proposes an alternative approach, in which the ML model is trained to predict dual solution estimates directly.
It enables an end-to-end training scheme is which the dual objective is as a loss function, and solution estimates toward primal feasibility, emulating a Dual Ascent method.
arXiv Detail & Related papers (2024-03-06T04:43:22Z) - Double Duality: Variational Primal-Dual Policy Optimization for
Constrained Reinforcement Learning [132.7040981721302]
We study the Constrained Convex Decision Process (MDP), where the goal is to minimize a convex functional of the visitation measure.
Design algorithms for a constrained convex MDP faces several challenges, including handling the large state space.
arXiv Detail & Related papers (2024-02-16T16:35:18Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Predict-Then-Optimize by Proxy: Learning Joint Models of Prediction and
Optimization [59.386153202037086]
Predict-Then- framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This approach can be inefficient and requires handcrafted, problem-specific rules for backpropagation through the optimization step.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by predictive models.
arXiv Detail & Related papers (2023-11-22T01:32:06Z) - Global Optimization: A Machine Learning Approach [7.052596485478637]
Bertsimas and Ozturk (2023) proposed OCTHaGOn as a way of solving black-box global optimization problems.
We provide extensions to this approach by approximating the original problem using other MIO-representable ML models.
We show improvements in solution feasibility and optimality in the majority of instances.
arXiv Detail & Related papers (2023-11-03T06:33:38Z) - Predict+Optimize for Packing and Covering LPs with Unknown Parameters in
Constraints [5.762370982168012]
We propose a novel and practically relevant framework for the Predict+ setting, but with unknown parameters in both the objective and the constraints.
We introduce the notion of a correction function, and an additional penalty term in the loss function, modelling practical scenarios where an estimated optimal solution can be modified into a feasible solution after the true parameters are revealed.
Our approach is inspired by the prior work of Mandi and Guns, though with crucial modifications and re-derivations for our very different setting.
arXiv Detail & Related papers (2022-09-08T09:28:24Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
The problem of constrained decision process (CMDP) is investigated, where an agent aims to maximize the expected accumulated discounted reward subject to multiple constraints.
A new utilities-dual convex approach is proposed with novel integration of three ingredients: regularized policy, dual regularizer, and Nesterov's gradient descent dual.
This is the first demonstration that nonconcave CMDP problems can attain the lower bound of $mathcal O (1/epsilon)$ for all complexity optimization subject to convex constraints.
arXiv Detail & Related papers (2021-10-20T02:57:21Z) - Goal Seeking Quadratic Unconstrained Binary Optimization [0.5439020425819]
We present two variants of goal-seeking QUBO that minimize the deviation from the goal through a tabu-search based greedy one-flip.
In this paper, we present two variants of goal-seeking QUBO that minimize the deviation from the goal through a tabu-search based greedy one-flip.
arXiv Detail & Related papers (2021-03-24T03:03:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.