Universal tripartite entanglement in one-dimensional many-body systems
- URL: http://arxiv.org/abs/2011.11864v2
- Date: Mon, 22 Mar 2021 18:47:23 GMT
- Title: Universal tripartite entanglement in one-dimensional many-body systems
- Authors: Yijian Zou, Karthik Siva, Tomohiro Soejima, Roger S.K. Mong, Michael
P. Zaletel
- Abstract summary: We introduce two related non-negative measures of tripartite entanglement $g$ and $h$.
We prove structure theorems which show that states with nonzero $g$ or $h$ have nontrivial tripartite entanglement.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Motivated by conjectures in holography relating the entanglement of
purification and reflected entropy to the entanglement wedge cross-section, we
introduce two related non-negative measures of tripartite entanglement $g$ and
$h$. We prove structure theorems which show that states with nonzero $g$ or $h$
have nontrivial tripartite entanglement. We then establish that in 1D these
tripartite entanglement measures are universal quantities that depend only on
the emergent low-energy theory. For a gapped system, we argue that either
$g\neq 0$ and $h=0$ or $g=h=0$, depending on whether the ground state has
long-range order. For a critical system, we develop a numerical algorithm for
computing $g$ and $h$ from a lattice model. We compute $g$ and $h$ for various
CFTs and show that $h$ depends only on the central charge whereas $g$ depends
on the whole operator content.
Related papers
- Conformal geometry from entanglement [14.735587711294299]
We identify a quantum information-theoretic mechanism by which the conformal geometry emerges at the gapless edge of a 2+1D quantum many-body system.
We show that stationarity of $mathfrakc_mathrmtot$ is equivalent to a vector fixed-point equation involving $eta$, making our assumption locally checkable.
arXiv Detail & Related papers (2024-04-04T18:00:03Z) - Geometry of degenerate quantum states, configurations of $m$-planes and invariants on complex Grassmannians [55.2480439325792]
We show how to reduce the geometry of degenerate states to the non-abelian connection $A$.
We find independent invariants associated with each triple of subspaces.
Some of them generalize the Berry-Pancharatnam phase, and some do not have analogues for 1-dimensional subspaces.
arXiv Detail & Related papers (2024-04-04T06:39:28Z) - Universal contributions to charge fluctuations in spin chains at finite
temperature [5.174839433707792]
We show that $gamma(theta)$ only takes non-zero values at isolated points of $theta$, which is $theta=pi$ for all our examples.
In two exemplary lattice systems we show that $gamma(pi)$ takes quantized values when the U(1) symmetry exhibits a specific type of 't Hooft anomaly with other symmetries.
arXiv Detail & Related papers (2024-01-17T19:05:07Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
Under nonlinear measurements, most prior results are non-uniform, i.e., they hold with high probability for a fixed $mathbfx*$ rather than for all $mathbfx*$ simultaneously.
Our framework accommodates GCS with 1-bit/uniformly quantized observations and single index models as canonical examples.
We also develop a concentration inequality that produces tighter bounds for product processes whose index sets have low metric entropy.
arXiv Detail & Related papers (2023-09-25T17:54:19Z) - Weak universality, quantum many-body scars and anomalous
infinite-temperature autocorrelations in a one-dimensional spin model with
duality [0.0]
We study a one-dimensional spin-$1/2$ model with three-spin interactions and a transverse magnetic field $h$.
We compute the critical exponents $z$, $beta$, $gamma$ and $nu$, and the central charge $c$.
For a system with periodic boundary conditions, there are an exponentially large number of exact mid-spectrum zero-energy eigenstates.
arXiv Detail & Related papers (2023-07-20T18:00:05Z) - Algebraic Aspects of Boundaries in the Kitaev Quantum Double Model [77.34726150561087]
We provide a systematic treatment of boundaries based on subgroups $Ksubseteq G$ with the Kitaev quantum double $D(G)$ model in the bulk.
The boundary sites are representations of a $*$-subalgebra $Xisubseteq D(G)$ and we explicate its structure as a strong $*$-quasi-Hopf algebra.
As an application of our treatment, we study patches with boundaries based on $K=G$ horizontally and $K=e$ vertically and show how these could be used in a quantum computer
arXiv Detail & Related papers (2022-08-12T15:05:07Z) - Topology-aware Generalization of Decentralized SGD [89.25765221779288]
This paper studies the generalizability of decentralized Valpha-10 stability descent (D-SGD)
We prove that the generalizability of D-SGD has a positive correlation with connectivity in initial training phase.
arXiv Detail & Related papers (2022-06-25T16:03:48Z) - Quantum double aspects of surface code models [77.34726150561087]
We revisit the Kitaev model for fault tolerant quantum computing on a square lattice with underlying quantum double $D(G)$ symmetry.
We show how our constructions generalise to $D(H)$ models based on a finite-dimensional Hopf algebra $H$.
arXiv Detail & Related papers (2021-06-25T17:03:38Z) - A degeneracy bound for homogeneous topological order [0.30458514384586394]
We introduce a notion of homogeneous topological order, which is obeyed by most, if not all, known examples of topological order.
We derive a bound on the ground state degeneracy $mathcal D$ for systems with homogeneous topological order.
arXiv Detail & Related papers (2020-09-28T18:03:17Z) - Emergent universality in critical quantum spin chains: entanglement
Virasoro algebra [1.9336815376402714]
Entanglement entropy and entanglement spectrum have been widely used to characterize quantum entanglement in extended many-body systems.
We show that the Schmidt vectors $|v_alpharangle$ display an emergent universal structure, corresponding to a realization of the Virasoro algebra of a boundary CFT.
arXiv Detail & Related papers (2020-09-23T21:22:51Z) - Curse of Dimensionality on Randomized Smoothing for Certifiable
Robustness [151.67113334248464]
We show that extending the smoothing technique to defend against other attack models can be challenging.
We present experimental results on CIFAR to validate our theory.
arXiv Detail & Related papers (2020-02-08T22:02:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.