Learning of Long-Horizon Sparse-Reward Robotic Manipulator Tasks with
Base Controllers
- URL: http://arxiv.org/abs/2011.12105v3
- Date: Sat, 4 Dec 2021 05:01:24 GMT
- Title: Learning of Long-Horizon Sparse-Reward Robotic Manipulator Tasks with
Base Controllers
- Authors: Guangming Wang, Minjian Xin, Wenhua Wu, Zhe Liu, Hesheng Wang
- Abstract summary: We propose a method of learning long-horizon sparse-reward tasks utilizing one or more traditional base controllers.
Our algorithm incorporates the existing base controllers into stages of exploration, value learning, and policy update.
Our method bears the potential of leveraging existing industrial robot manipulation systems to build more flexible and intelligent controllers.
- Score: 26.807673929816026
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Reinforcement Learning (DRL) enables robots to perform some intelligent
tasks end-to-end. However, there are still many challenges for long-horizon
sparse-reward robotic manipulator tasks. On the one hand, a sparse-reward
setting causes exploration inefficient. On the other hand, exploration using
physical robots is of high cost and unsafe. In this paper, we propose a method
of learning long-horizon sparse-reward tasks utilizing one or more existing
traditional controllers named base controllers in this paper. Built upon Deep
Deterministic Policy Gradients (DDPG), our algorithm incorporates the existing
base controllers into stages of exploration, value learning, and policy update.
Furthermore, we present a straightforward way of synthesizing different base
controllers to integrate their strengths. Through experiments ranging from
stacking blocks to cups, it is demonstrated that the learned state-based or
image-based policies steadily outperform base controllers. Compared to previous
works of learning from demonstrations, our method improves sample efficiency by
orders of magnitude and improves the performance. Overall, our method bears the
potential of leveraging existing industrial robot manipulation systems to build
more flexible and intelligent controllers.
Related papers
- Robotic Control via Embodied Chain-of-Thought Reasoning [86.6680905262442]
Key limitation of learned robot control policies is their inability to generalize outside their training data.
Recent works on vision-language-action models (VLAs) have shown that the use of large, internet pre-trained vision-language models can substantially improve their robustness and generalization ability.
We introduce Embodied Chain-of-Thought Reasoning (ECoT) for VLAs, in which we train VLAs to perform multiple steps of reasoning about plans, sub-tasks, motions, and visually grounded features before predicting the robot action.
arXiv Detail & Related papers (2024-07-11T17:31:01Z) - SERL: A Software Suite for Sample-Efficient Robotic Reinforcement
Learning [85.21378553454672]
We develop a library containing a sample efficient off-policy deep RL method, together with methods for computing rewards and resetting the environment.
We find that our implementation can achieve very efficient learning, acquiring policies for PCB board assembly, cable routing, and object relocation.
These policies achieve perfect or near-perfect success rates, extreme robustness even under perturbations, and exhibit emergent robustness recovery and correction behaviors.
arXiv Detail & Related papers (2024-01-29T10:01:10Z) - Contact Energy Based Hindsight Experience Prioritization [19.42106651692228]
Multi-goal robot manipulation tasks with sparse rewards are difficult for reinforcement learning (RL) algorithms.
Recent algorithms such as Hindsight Experience Replay (HER) expedite learning by taking advantage of failed trajectories.
We propose a novel approach Contact Energy Based Prioritization(CEBP) to select the samples from the replay buffer based on rich information due to contact.
arXiv Detail & Related papers (2023-12-05T11:32:25Z) - Nonprehensile Planar Manipulation through Reinforcement Learning with
Multimodal Categorical Exploration [8.343657309038285]
Reinforcement Learning is a powerful framework for developing such robot controllers.
We propose a multimodal exploration approach through categorical distributions, which enables us to train planar pushing RL policies.
We show that the learned policies are robust to external disturbances and observation noise, and scale to tasks with multiple pushers.
arXiv Detail & Related papers (2023-08-04T16:55:00Z) - Stabilizing Contrastive RL: Techniques for Robotic Goal Reaching from
Offline Data [101.43350024175157]
Self-supervised learning has the potential to decrease the amount of human annotation and engineering effort required to learn control strategies.
Our work builds on prior work showing that the reinforcement learning (RL) itself can be cast as a self-supervised problem.
We demonstrate that a self-supervised RL algorithm based on contrastive learning can solve real-world, image-based robotic manipulation tasks.
arXiv Detail & Related papers (2023-06-06T01:36:56Z) - DexPBT: Scaling up Dexterous Manipulation for Hand-Arm Systems with
Population Based Training [10.808149303943948]
We learn dexterous object manipulation using simulated one- or two-armed robots equipped with multi-fingered hand end-effectors.
We introduce a decentralized Population-Based Training (PBT) algorithm that allows us to massively amplify the exploration capabilities of deep reinforcement learning.
arXiv Detail & Related papers (2023-05-20T07:25:27Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
In imitation and reinforcement learning, the cost of human supervision limits the amount of data that robots can be trained on.
In this work, we propose MEDAL++, a novel design for self-improving robotic systems.
The robot autonomously practices the task by learning to both do and undo the task, simultaneously inferring the reward function from the demonstrations.
arXiv Detail & Related papers (2023-03-02T18:51:38Z) - Leveraging Sequentiality in Reinforcement Learning from a Single
Demonstration [68.94506047556412]
We propose to leverage a sequential bias to learn control policies for complex robotic tasks using a single demonstration.
We show that DCIL-II can solve with unprecedented sample efficiency some challenging simulated tasks such as humanoid locomotion and stand-up.
arXiv Detail & Related papers (2022-11-09T10:28:40Z) - Accelerating Robotic Reinforcement Learning via Parameterized Action
Primitives [92.0321404272942]
Reinforcement learning can be used to build general-purpose robotic systems.
However, training RL agents to solve robotics tasks still remains challenging.
In this work, we manually specify a library of robot action primitives (RAPS), parameterized with arguments that are learned by an RL policy.
We find that our simple change to the action interface substantially improves both the learning efficiency and task performance.
arXiv Detail & Related papers (2021-10-28T17:59:30Z) - SQUIRL: Robust and Efficient Learning from Video Demonstration of
Long-Horizon Robotic Manipulation Tasks [8.756012472587601]
Deep reinforcement learning (RL) can be used to learn complex manipulation tasks.
RL requires the robot to collect a large amount of real-world experience.
S SQUIRL performs a new but related long-horizon task robustly given only a single video demonstration.
arXiv Detail & Related papers (2020-03-10T20:26:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.