SERL: A Software Suite for Sample-Efficient Robotic Reinforcement
Learning
- URL: http://arxiv.org/abs/2401.16013v3
- Date: Tue, 13 Feb 2024 04:40:46 GMT
- Title: SERL: A Software Suite for Sample-Efficient Robotic Reinforcement
Learning
- Authors: Jianlan Luo, Zheyuan Hu, Charles Xu, You Liang Tan, Jacob Berg, Archit
Sharma, Stefan Schaal, Chelsea Finn, Abhishek Gupta, Sergey Levine
- Abstract summary: We develop a library containing a sample efficient off-policy deep RL method, together with methods for computing rewards and resetting the environment.
We find that our implementation can achieve very efficient learning, acquiring policies for PCB board assembly, cable routing, and object relocation.
These policies achieve perfect or near-perfect success rates, extreme robustness even under perturbations, and exhibit emergent robustness recovery and correction behaviors.
- Score: 85.21378553454672
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, significant progress has been made in the field of robotic
reinforcement learning (RL), enabling methods that handle complex image
observations, train in the real world, and incorporate auxiliary data, such as
demonstrations and prior experience. However, despite these advances, robotic
RL remains hard to use. It is acknowledged among practitioners that the
particular implementation details of these algorithms are often just as
important (if not more so) for performance as the choice of algorithm. We posit
that a significant challenge to widespread adoption of robotic RL, as well as
further development of robotic RL methods, is the comparative inaccessibility
of such methods. To address this challenge, we developed a carefully
implemented library containing a sample efficient off-policy deep RL method,
together with methods for computing rewards and resetting the environment, a
high-quality controller for a widely-adopted robot, and a number of challenging
example tasks. We provide this library as a resource for the community,
describe its design choices, and present experimental results. Perhaps
surprisingly, we find that our implementation can achieve very efficient
learning, acquiring policies for PCB board assembly, cable routing, and object
relocation between 25 to 50 minutes of training per policy on average,
improving over state-of-the-art results reported for similar tasks in the
literature. These policies achieve perfect or near-perfect success rates,
extreme robustness even under perturbations, and exhibit emergent recovery and
correction behaviors. We hope that these promising results and our high-quality
open-source implementation will provide a tool for the robotics community to
facilitate further developments in robotic RL. Our code, documentation, and
videos can be found at https://serl-robot.github.io/
Related papers
- Precise and Dexterous Robotic Manipulation via Human-in-the-Loop Reinforcement Learning [47.785786984974855]
We present a human-in-the-loop vision-based RL system that demonstrates impressive performance on a diverse set of dexterous manipulation tasks.
Our approach integrates demonstrations and human corrections, efficient RL algorithms, and other system-level design choices to learn policies.
We show that our method significantly outperforms imitation learning baselines and prior RL approaches, with an average 2x improvement in success rate and 1.8x faster execution.
arXiv Detail & Related papers (2024-10-29T08:12:20Z) - Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
We propose a new benchmarking environment for aquatic navigation using recent advances in the integration between game engines and Deep Reinforcement Learning.
Specifically, we focus on PPO, one of the most widely accepted algorithms, and we propose advanced training techniques.
Our empirical evaluation shows that a well-designed combination of these ingredients can achieve promising results.
arXiv Detail & Related papers (2024-05-30T23:20:23Z) - Active Exploration in Bayesian Model-based Reinforcement Learning for Robot Manipulation [8.940998315746684]
We propose a model-based reinforcement learning (RL) approach for robotic arm end-tasks.
We employ Bayesian neural network models to represent, in a probabilistic way, both the belief and information encoded in the dynamic model during exploration.
Our experiments show the advantages of our Bayesian model-based RL approach, with similar quality in the results than relevant alternatives.
arXiv Detail & Related papers (2024-04-02T11:44:37Z) - A Real-World Quadrupedal Locomotion Benchmark for Offline Reinforcement
Learning [27.00483962026472]
We benchmark 11 offline reinforcement learning algorithms in realistic quadrupedal locomotion dataset.
Experiments show that the best-performing ORL algorithms can achieve competitive performance compared with the model-free RL.
Our proposed benchmark will serve as a development platform for testing and evaluating the performance of ORL algorithms in real-world legged locomotion tasks.
arXiv Detail & Related papers (2023-09-13T13:18:29Z) - Don't Start From Scratch: Leveraging Prior Data to Automate Robotic
Reinforcement Learning [70.70104870417784]
Reinforcement learning (RL) algorithms hold the promise of enabling autonomous skill acquisition for robotic systems.
In practice, real-world robotic RL typically requires time consuming data collection and frequent human intervention to reset the environment.
In this work, we study how these challenges can be tackled by effective utilization of diverse offline datasets collected from previously seen tasks.
arXiv Detail & Related papers (2022-07-11T08:31:22Z) - Constrained Reinforcement Learning for Robotics via Scenario-Based
Programming [64.07167316957533]
It is crucial to optimize the performance of DRL-based agents while providing guarantees about their behavior.
This paper presents a novel technique for incorporating domain-expert knowledge into a constrained DRL training loop.
Our experiments demonstrate that using our approach to leverage expert knowledge dramatically improves the safety and the performance of the agent.
arXiv Detail & Related papers (2022-06-20T07:19:38Z) - Accelerating Robot Learning of Contact-Rich Manipulations: A Curriculum
Learning Study [4.045850174820418]
This paper presents a study for accelerating robot learning of contact-rich manipulation tasks based on Curriculum Learning combined with Domain Randomization (DR)
We tackle complex industrial assembly tasks with position-controlled robots, such as insertion tasks.
Results also show that even when training only in simulation with toy tasks, our method can learn policies that can be transferred to the real-world robot.
arXiv Detail & Related papers (2022-04-27T11:08:39Z) - Accelerating Robotic Reinforcement Learning via Parameterized Action
Primitives [92.0321404272942]
Reinforcement learning can be used to build general-purpose robotic systems.
However, training RL agents to solve robotics tasks still remains challenging.
In this work, we manually specify a library of robot action primitives (RAPS), parameterized with arguments that are learned by an RL policy.
We find that our simple change to the action interface substantially improves both the learning efficiency and task performance.
arXiv Detail & Related papers (2021-10-28T17:59:30Z) - A Framework for Efficient Robotic Manipulation [79.10407063260473]
We show that a single robotic arm can learn sparse-reward manipulation policies from pixels.
We show that, given only 10 demonstrations, a single robotic arm can learn sparse-reward manipulation policies from pixels.
arXiv Detail & Related papers (2020-12-14T22:18:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.