論文の概要: FireSRnet: Geoscience-Driven Super-Resolution of Future Fire Risk from
Climate Change
- arxiv url: http://arxiv.org/abs/2011.12353v1
- Date: Tue, 24 Nov 2020 20:19:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-21 14:22:26.070651
- Title: FireSRnet: Geoscience-Driven Super-Resolution of Future Fire Risk from
Climate Change
- Title(参考訳): FireSRnet:地球科学による気候変動による火災リスクの超解法
- Authors: Tristan Ballard and Gopal Erinjippurath
- Abstract要約: 本稿では, 火災リスク露光マップの高分解能化に向けた新しいアプローチを提案する。
SRアーキテクチャに着想を得て, 火災リスク露光マップ上で, SRのために訓練された効率的なディープラーニングモデルを提案する。
我々は,このSRモデルの北カリフォルニアおよびニューサウスウェールズ州における一般化可能性を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: With fires becoming increasingly frequent and severe across the globe in
recent years, understanding climate change's role in fire behavior is critical
for quantifying current and future fire risk. However, global climate models
typically simulate fire behavior at spatial scales too coarse for local risk
assessments. Therefore, we propose a novel approach towards super-resolution
(SR) enhancement of fire risk exposure maps that incorporates not only 2000 to
2020 monthly satellite observations of active fires but also local information
on land cover and temperature. Inspired by SR architectures, we propose an
efficient deep learning model trained for SR on fire risk exposure maps. We
evaluate this model on resolution enhancement and find it outperforms standard
image interpolation techniques at both 4x and 8x enhancement while having
comparable performance at 2x enhancement. We then demonstrate the
generalizability of this SR model over northern California and New South Wales,
Australia. We conclude with a discussion and application of our proposed model
to climate model simulations of fire risk in 2040 and 2100, illustrating the
potential for SR enhancement of fire risk maps from the latest state-of-the-art
climate models.
- Abstract(参考訳): 近年、世界中で度重なる火災が発生しており、火災行動における気候変動の役割を理解することは、現在および将来の火災リスクの定量化に不可欠である。
しかし、地球規模の気候モデルは通常、局所的なリスク評価には粗い空間スケールでの火災挙動をシミュレートする。
そこで本稿では,2000年から2020年までの月次衛星観測だけでなく,土地被覆や気温に関する地域情報も含む,超解像(sr)による火災リスク曝露マップの高度化に向けた新しいアプローチを提案する。
SRアーキテクチャに着想を得て, 火災リスク露光マップ上で, SRのために訓練された効率的なディープラーニングモデルを提案する。
本モデルでは,解像度向上に関する評価を行い,標準画像補間技術よりも4倍,8倍の精度で性能を向上する。
次に,このSRモデルの北カリフォルニアおよびニューサウスウェールズ州における一般化可能性を示す。
我々は,2040年と2100年の火災リスクの気候モデルシミュレーションへの提案モデルの適用を議論し,最新の気象モデルからSRによる火災リスクマップの強化の可能性について考察した。
関連論文リスト
- Bushfire Severity Modelling and Future Trend Prediction Across Australia: Integrating Remote Sensing and Machine Learning [0.43012765978447565]
本研究は,過去12年間のオーストラリアにおける森林火災の深刻度を詳細に分析した。
ランドサット画像を活用し,NDVI,NBR,バーン指数などのスペクトル指標と地形的・気候的要因を併用することにより,ロバストな予測モデルを構築した。
このモデルは86.13%の精度を達成し、様々なオーストラリアの生態系で火災の深刻度を予測する効果を示した。
論文 参考訳(メタデータ) (2024-09-18T04:57:48Z) - Global Lightning-Ignited Wildfires Prediction and Climate Change Projections based on Explainable Machine Learning Models [0.8039067099377079]
森林火災は人口に重大な自然災害のリスクをもたらし、気候変動の加速に貢献している。
本研究では,世界規模で雷に照らされた山火事の特徴と予測を目的とした機械学習モデルを提案する。
雷に照らされた山火事の季節的・空間的傾向が気候変動の影響について分析した。
論文 参考訳(メタデータ) (2024-09-16T07:19:08Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - OXYGENERATOR: Reconstructing Global Ocean Deoxygenation Over a Century with Deep Learning [50.365198230613956]
既存の専門家が支配する数値シミュレーションは、地球温暖化や人的活動によって引き起こされる動的変動に追いつかなかった。
1920年から2023年までの世界の海洋脱酸素モデルを再構築するために,最初の深層学習モデルであるOxyGeneratorを提案する。
論文 参考訳(メタデータ) (2024-05-12T09:32:40Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
この研究は、データ駆動型世界天気予報モデルであるFengWu-GHRを、0.09$circ$水平解像度で実行した。
低解像度モデルから事前知識を継承することにより、MLベースの高解像度予測を操作するための扉を開く新しいアプローチを導入する。
2022年の天気予報は、FengWu-GHRがIFS-HRESよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-28T13:23:25Z) - Reinforcement Learning for Wildfire Mitigation in Simulated Disaster
Environments [39.014859667729375]
森林火災は生命、財産、生態学、文化遺産、重要なインフラに脅威をもたらす。
SimFireは、現実的な山火事シナリオを生成するために設計された、多用途の野火投射シミュレータである。
SimHarnessはモジュール型のエージェントベースの機械学習ラッパーで、自動的に土地管理戦略を生成することができる。
論文 参考訳(メタデータ) (2023-11-27T15:37:05Z) - Modelling wildland fire burn severity in California using a spatial
Super Learner approach [0.04188114563181614]
米国西部の森林火災の頻度が高まる中、燃え尽き症候群を理解・正確に予測するツールを開発する必要がある。
遠隔で検知した火災予報データを用いて,燃焼後重大度を予測する機械学習モデルを開発した。
このモデルが実装されると、カリフォルニアの人命、財産、資源、生態系が失われる可能性がある。
論文 参考訳(メタデータ) (2023-11-25T22:09:14Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - Wildfire risk forecast: An optimizable fire danger index [0.0]
森林火災は世界中の多くの地域で深刻な被害をもたらしており、気候変動によって増加すると予想されている。
火災リスク指標は、火災のリスクを予測するために天気予報を使用する。
火災リスク指標の予測は、リスクの高い場所で資源を割り当てるために使用することができる。
そこで本研究では,勾配降下による内部パラメータの最適化が可能な微分可能な関数として,一指標(NFDRS IC)の新たな実装を提案する。
論文 参考訳(メタデータ) (2022-03-28T14:08:49Z) - From Static to Dynamic Prediction: Wildfire Risk Assessment Based on
Multiple Environmental Factors [69.9674326582747]
ワイルドファイアはアメリカ合衆国西海岸で頻繁に起こる最大の災害の1つである。
カリフォルニアの山火事リスクが高い地域を解析・評価するための静的・動的予測モデルを提案します。
論文 参考訳(メタデータ) (2021-03-14T17:56:17Z) - Physics-informed GANs for Coastal Flood Visualization [65.54626149826066]
我々は,現在および将来の沿岸洪水の衛星画像を生成する深層学習パイプラインを構築した。
物理に基づく洪水図と比較して画像を評価することにより,提案手法は物理的一貫性とフォトリアリズムの両方において,ベースラインモデルよりも優れていることがわかった。
この研究は沿岸の洪水の可視化に焦点が当てられているが、気候変動が地球をどう形作るかのグローバルな可視化を作成することを想定している。
論文 参考訳(メタデータ) (2020-10-16T02:15:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。