Supercharging Imbalanced Data Learning With Energy-based Contrastive
Representation Transfer
- URL: http://arxiv.org/abs/2011.12454v4
- Date: Fri, 19 Nov 2021 07:15:07 GMT
- Title: Supercharging Imbalanced Data Learning With Energy-based Contrastive
Representation Transfer
- Authors: Zidi Xiu, Junya Chen, Ricardo Henao, Benjamin Goldstein, Lawrence
Carin, Chenyang Tao
- Abstract summary: In computer vision, learning from long tailed datasets is a recurring theme, especially for natural image datasets.
Our proposal posits a meta-distributional scenario, where the data generating mechanism is invariant across the label-conditional feature distributions.
This allows us to leverage a causal data inflation procedure to enlarge the representation of minority classes.
- Score: 72.5190560787569
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dealing with severe class imbalance poses a major challenge for real-world
applications, especially when the accurate classification and generalization of
minority classes is of primary interest. In computer vision, learning from long
tailed datasets is a recurring theme, especially for natural image datasets.
While existing solutions mostly appeal to sampling or weighting adjustments to
alleviate the pathological imbalance, or imposing inductive bias to prioritize
non-spurious associations, we take novel perspectives to promote sample
efficiency and model generalization based on the invariance principles of
causality. Our proposal posits a meta-distributional scenario, where the data
generating mechanism is invariant across the label-conditional feature
distributions. Such causal assumption enables efficient knowledge transfer from
the dominant classes to their under-represented counterparts, even if the
respective feature distributions show apparent disparities. This allows us to
leverage a causal data inflation procedure to enlarge the representation of
minority classes. Our development is orthogonal to the existing extreme
classification techniques thus can be seamlessly integrated. The utility of our
proposal is validated with an extensive set of synthetic and real-world
computer vision tasks against SOTA solutions.
Related papers
- Enhancing Image Classification in Small and Unbalanced Datasets through Synthetic Data Augmentation [0.0]
This paper introduces a novel synthetic augmentation strategy using class-specific Variational Autoencoders (VAEs) and latent space to improve discrimination capabilities.
By generating realistic, varied synthetic data that fills feature space gaps, we address issues of data scarcity and class imbalance.
The proposed strategy was tested in a small dataset of 321 images created to train and validate an automatic method for assessing the quality of cleanliness of esophagogastroduodenoscopy images.
arXiv Detail & Related papers (2024-09-16T13:47:52Z) - Causality and Independence Enhancement for Biased Node Classification [56.38828085943763]
We propose a novel Causality and Independence Enhancement (CIE) framework, applicable to various graph neural networks (GNNs)
Our approach estimates causal and spurious features at the node representation level and mitigates the influence of spurious correlations.
Our approach CIE not only significantly enhances the performance of GNNs but outperforms state-of-the-art debiased node classification methods.
arXiv Detail & Related papers (2023-10-14T13:56:24Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
Imbalanced datasets are commonly observed in various real-world applications, presenting significant challenges in training classifiers.
We propose generating synthetic samples iteratively by mixing data samples from both minority and majority classes.
We demonstrate the effectiveness of our proposed framework through extensive experiments conducted on seven publicly available benchmark datasets.
arXiv Detail & Related papers (2023-08-28T18:48:34Z) - Stabilizing and Improving Federated Learning with Non-IID Data and
Client Dropout [15.569507252445144]
Label distribution skew induced data heterogeniety has been shown to be a significant obstacle that limits the model performance in federated learning.
We propose a simple yet effective framework by introducing a prior-calibrated softmax function for computing the cross-entropy loss.
The improved model performance over existing baselines in the presence of non-IID data and client dropout is demonstrated.
arXiv Detail & Related papers (2023-03-11T05:17:59Z) - Balancing Discriminability and Transferability for Source-Free Domain
Adaptation [55.143687986324935]
Conventional domain adaptation (DA) techniques aim to improve domain transferability by learning domain-invariant representations.
The requirement of simultaneous access to labeled source and unlabeled target renders them unsuitable for the challenging source-free DA setting.
We derive novel insights to show that a mixup between original and corresponding translated generic samples enhances the discriminability-transferability trade-off.
arXiv Detail & Related papers (2022-06-16T09:06:22Z) - Bias-inducing geometries: an exactly solvable data model with fairness
implications [13.690313475721094]
We introduce an exactly solvable high-dimensional model of data imbalance.
We analytically unpack the typical properties of learning models trained in this synthetic framework.
We obtain exact predictions for the observables that are commonly employed for fairness assessment.
arXiv Detail & Related papers (2022-05-31T16:27:57Z) - Generalizable Information Theoretic Causal Representation [37.54158138447033]
We propose to learn causal representation from observational data by regularizing the learning procedure with mutual information measures according to our hypothetical causal graph.
The optimization involves a counterfactual loss, based on which we deduce a theoretical guarantee that the causality-inspired learning is with reduced sample complexity and better generalization ability.
arXiv Detail & Related papers (2022-02-17T00:38:35Z) - Unsupervised Learning of Debiased Representations with Pseudo-Attributes [85.5691102676175]
We propose a simple but effective debiasing technique in an unsupervised manner.
We perform clustering on the feature embedding space and identify pseudoattributes by taking advantage of the clustering results.
We then employ a novel cluster-based reweighting scheme for learning debiased representation.
arXiv Detail & Related papers (2021-08-06T05:20:46Z) - Improving Fairness of AI Systems with Lossless De-biasing [15.039284892391565]
Mitigating bias in AI systems to increase overall fairness has emerged as an important challenge.
We present an information-lossless de-biasing technique that targets the scarcity of data in the disadvantaged group.
arXiv Detail & Related papers (2021-05-10T17:38:38Z) - When Relation Networks meet GANs: Relation GANs with Triplet Loss [110.7572918636599]
Training stability is still a lingering concern of generative adversarial networks (GANs)
In this paper, we explore a relation network architecture for the discriminator and design a triplet loss which performs better generalization and stability.
Experiments on benchmark datasets show that the proposed relation discriminator and new loss can provide significant improvement on variable vision tasks.
arXiv Detail & Related papers (2020-02-24T11:35:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.