Inverse design of dissipative quantum steady-states with implicit
differentiation
- URL: http://arxiv.org/abs/2011.12808v1
- Date: Wed, 25 Nov 2020 15:08:38 GMT
- Title: Inverse design of dissipative quantum steady-states with implicit
differentiation
- Authors: Rodrigo A. Vargas-Hern\'andez, Ricky T. Q. Chen, Kenneth A. Jung, Paul
Brumer
- Abstract summary: Inverse design of a property that depends on the steady-state of an open quantum system is commonly done by grid-search type of methods.
We present a new methodology that allows us to compute the gradient of the steady-state of an open quantum system with respect to any parameter of the Hamiltonian.
- Score: 7.862208848127913
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Inverse design of a property that depends on the steady-state of an open
quantum system is commonly done by grid-search type of methods. In this paper
we present a new methodology that allows us to compute the gradient of the
steady-state of an open quantum system with respect to any parameter of the
Hamiltonian using the implicit differentiation theorem. As an example, we
present a simulation of a spin-boson model where the steady-state solution is
obtained using Redfield theory.
Related papers
- Open quantum dynamics with variational non-Gaussian states and the truncated Wigner approximation [0.0]
We present a framework for simulating the open dynamics of spin-boson systems by combining variational non-Gaussian states with a quantum trajectories approach.
We discuss how the recently developed truncated Wigner approximation for open quantum systems can be applied to the same Hamiltonian.
arXiv Detail & Related papers (2024-07-02T19:10:03Z) - Quantum Computed Green's Functions using a Cumulant Expansion of the Lanczos Method [0.0]
We present a quantum computational method to calculate the many-body Green's function matrix in a spin orbital basis.
We demonstrate the calculation of Green's functions on Quantinuum's H1-1 trapped-ion quantum computer.
arXiv Detail & Related papers (2023-09-18T11:45:04Z) - Fermionic approach to variational quantum simulation of Kitaev spin
models [50.92854230325576]
Kitaev spin models are well known for being exactly solvable in a certain parameter regime via a mapping to free fermions.
We use classical simulations to explore a novel variational ansatz that takes advantage of this fermionic representation.
We also comment on the implications of our results for simulating non-Abelian anyons on quantum computers.
arXiv Detail & Related papers (2022-04-11T18:00:01Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Machine Learning S-Wave Scattering Phase Shifts Bypassing the Radial
Schr\"odinger Equation [77.34726150561087]
We present a proof of concept machine learning model resting on a convolutional neural network capable to yield accurate scattering s-wave phase shifts.
We discuss how the Hamiltonian can serve as a guiding principle in the construction of a physically-motivated descriptor.
arXiv Detail & Related papers (2021-06-25T17:25:38Z) - Eigenvalues and Eigenstates of Quantum Rabi Model [0.0]
We present an approach to the exact diagonalization of the quantum Rabi Hamiltonian.
It is shown that the obtained eigenstates can be represented in the basis of the eigenstates of the Jaynes-Cummings Hamiltonian.
arXiv Detail & Related papers (2021-04-26T17:45:41Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Method of spectral Green functions in driven open quantum dynamics [77.34726150561087]
A novel method based on spectral Green functions is presented for the simulation of driven open quantum dynamics.
The formalism shows remarkable analogies to the use of Green functions in quantum field theory.
The method dramatically reduces computational cost compared with simulations based on solving the full master equation.
arXiv Detail & Related papers (2020-06-04T09:41:08Z) - Variational Quantum Algorithms for Steady States of Open Quantum Systems [2.740982822457262]
We propose a variational quantum algorithm to find the steady state of open quantum systems.
The fidelity between the optimal mixed state and the true steady state is over 99%.
This algorithm is derived from the natural idea of expressing mixed states with purification.
arXiv Detail & Related papers (2020-01-08T14:47:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.