t-EVA: Time-Efficient t-SNE Video Annotation
- URL: http://arxiv.org/abs/2011.13202v1
- Date: Thu, 26 Nov 2020 09:56:54 GMT
- Title: t-EVA: Time-Efficient t-SNE Video Annotation
- Authors: Soroosh Poorgholi, Osman Semih Kayhan and Jan C. van Gemert
- Abstract summary: t-EVA can outperform other video annotation tools while maintaining test accuracy on video classification.
We show that t-EVA can outperform other video annotation tools while maintaining test accuracy on video classification.
- Score: 16.02592287695421
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Video understanding has received more attention in the past few years due to
the availability of several large-scale video datasets. However, annotating
large-scale video datasets are cost-intensive. In this work, we propose a
time-efficient video annotation method using spatio-temporal feature similarity
and t-SNE dimensionality reduction to speed up the annotation process
massively. Placing the same actions from different videos near each other in
the two-dimensional space based on feature similarity helps the annotator to
group-label video clips. We evaluate our method on two subsets of the
ActivityNet (v1.3) and a subset of the Sports-1M dataset. We show that t-EVA
can outperform other video annotation tools while maintaining test accuracy on
video classification.
Related papers
- HAVANA: Hierarchical stochastic neighbor embedding for Accelerated Video ANnotAtions [59.71751978599567]
This paper presents a novel annotation pipeline that uses pre-extracted features and dimensionality reduction to accelerate the temporal video annotation process.
We demonstrate significant improvements in annotation effort compared to traditional linear methods, achieving more than a 10x reduction in clicks required for annotating over 12 hours of video.
arXiv Detail & Related papers (2024-09-16T18:15:38Z) - Sync from the Sea: Retrieving Alignable Videos from Large-Scale Datasets [62.280729345770936]
We introduce the task of Alignable Video Retrieval (AVR)
Given a query video, our approach can identify well-alignable videos from a large collection of clips and temporally synchronize them to the query.
Our experiments on 3 datasets, including large-scale Kinetics700, demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-09-02T20:00:49Z) - Point-VOS: Pointing Up Video Object Segmentation [16.359861197595986]
Current state-of-the-art Video Object (VOS) methods rely on dense per-object mask annotations both during training and testing.
We propose a novel Point-VOS task with a sparse-temporally point-wise annotation scheme that substantially reduces the effort.
We show that our data can be used to improve models that connect vision and language, by evaluating it on the Video Narrative Grounding (VNG) task.
arXiv Detail & Related papers (2024-02-08T18:52:23Z) - Learning the What and How of Annotation in Video Object Segmentation [11.012995995497029]
Video Object (VOS) is crucial for several applications, from video editing to video data generation.
Traditional way of annotating objects requires humans to draw detailed segmentation masks on the target objects at each video frame.
We propose EVA-VOS, a human-in-the-loop annotation framework for video object segmentation.
arXiv Detail & Related papers (2023-11-08T00:56:31Z) - Towards Video Anomaly Retrieval from Video Anomaly Detection: New
Benchmarks and Model [70.97446870672069]
Video anomaly detection (VAD) has been paid increasing attention due to its potential applications.
Video Anomaly Retrieval ( VAR) aims to pragmatically retrieve relevant anomalous videos by cross-modalities.
We present two benchmarks, UCFCrime-AR and XD-Violence, constructed on top of prevalent anomaly datasets.
arXiv Detail & Related papers (2023-07-24T06:22:37Z) - Self-supervised and Weakly Supervised Contrastive Learning for
Frame-wise Action Representations [26.09611987412578]
We introduce a new framework of contrastive action representation learning (CARL) to learn frame-wise action representation in a self-supervised or weakly-supervised manner.
Specifically, we introduce a simple but effective video encoder that considers both spatial and temporal context.
Our method outperforms previous state-of-the-art by a large margin for downstream fine-grained action classification and even faster inference.
arXiv Detail & Related papers (2022-12-06T16:42:22Z) - Beyond Short Clips: End-to-End Video-Level Learning with Collaborative
Memories [56.91664227337115]
We introduce a collaborative memory mechanism that encodes information across multiple sampled clips of a video at each training iteration.
This enables the learning of long-range dependencies beyond a single clip.
Our proposed framework is end-to-end trainable and significantly improves the accuracy of video classification at a negligible computational overhead.
arXiv Detail & Related papers (2021-04-02T18:59:09Z) - Hybrid Dynamic-static Context-aware Attention Network for Action
Assessment in Long Videos [96.45804577283563]
We present a novel hybrid dynAmic-static Context-aware attenTION NETwork (ACTION-NET) for action assessment in long videos.
We learn the video dynamic information but also focus on the static postures of the detected athletes in specific frames.
We combine the features of the two streams to regress the final video score, supervised by ground-truth scores given by experts.
arXiv Detail & Related papers (2020-08-13T15:51:42Z) - Self-supervised Video Representation Learning Using Inter-intra
Contrastive Framework [43.002621928500425]
We propose a self-supervised method to learn feature representations from videos.
Because video representation is important, we extend negative samples by introducing intra-negative samples.
We conduct experiments on video retrieval and video recognition tasks using the learned video representation.
arXiv Detail & Related papers (2020-08-06T09:08:14Z) - Temporal Context Aggregation for Video Retrieval with Contrastive
Learning [81.12514007044456]
We propose TCA, a video representation learning framework that incorporates long-range temporal information between frame-level features.
The proposed method shows a significant performance advantage (17% mAP on FIVR-200K) over state-of-the-art methods with video-level features.
arXiv Detail & Related papers (2020-08-04T05:24:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.